Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\text{Δ}ABC\sim\text{Δ}HBA;\text{Δ}ABC\sim\text{Δ}HCA\)
b: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right)\)
CH=BC-BH=25-9=16(cm)
c1 chắc có lộn đề r
c2:Gọi 2 số cần tìm lần lượt là a,b
Ta có: 9/11a=6/7b
a+b=258 nên a=258-b
=>9/11*(258-b)=6/7b
2322/11-9/11b=6/7b
6/7b+9/11b=2322/11
66/77+63/77b=2322/11
129/77b=2322/11
b=2322/11:129/77=126
nên a=258-126=132
Vậy 2 số cần tìm lần lượt là 132;126
Không chép lại đề nhé
Ta có:
P=\(\frac{50-49}{49}+\frac{50-48}{48}+...+\frac{50-2}{2}+\frac{50-1}{1}\)
P=\(\frac{50}{49}-\frac{49}{49}+\frac{50}{48}-\frac{48}{48}+...+\frac{50}{2}-\frac{2}{2}+\frac{50}{1}-\frac{1}{1}\)
P=\(\left(\frac{50}{49}+\frac{50}{48}+...+\frac{50}{2}\right)+\frac{50}{1}-\left(\frac{49}{49}+\frac{48}{48}+...+\frac{2}{2}+\frac{1}{1}\right)\)
P=\(50\cdot\left(\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)+50-49\) (chỗ này gộp nha)
P=\(50\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{48}+\frac{1}{49}\right)+1\)
P=\(50\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\right)+\frac{50}{50}\)
P=\(50\cdot\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)\)
=>P=50S
=>\(\frac{S}{P}=\frac{S}{50S}=\frac{1}{50}\)
Vừa nãy mình nói nhầm, Sorry.
S = \(3+3.\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
Đặt A = \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
=> 2A = \(1+\frac{1}{2}+...+\frac{1}{2^8}\)
=> 2A - A = A = \(\left(1+\frac{1}{2}+...+\frac{1}{2^8}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)=1-\frac{1}{2^9}\)
=> S = 3 + 3 . A = \(3+3.\left(1-\frac{1}{2^9}\right)=3+3-\frac{3}{2^9}=6-\frac{3}{2^9}\)
a: Xét tứ giác OBDC có
\(\widehat{OBD}+\widehat{OCD}=180^0\)
Do đó: OBDC là tứ giác nội tiếp
b: Xét ΔEBA và ΔECB có
\(\widehat{E}\) chung
\(\widehat{EAB}=\widehat{EBC}\)
Do đó: ΔEBA\(\sim\)ΔECB
Suy ra: EB/EC=EA/EB
hay \(EB^2=EC\cdot EA\)
Đáp án A