K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2017

Ta có :\(\dfrac{x}{y+z}=\dfrac{123-\left(y+z\right)}{y+z}\)

\(\dfrac{y}{x+z}=\dfrac{123-\left(x+z\right)}{x+z}\)

\(\dfrac{z}{y+x}=\dfrac{123-\left(y+x\right)}{y+x}\)

\(\Rightarrow P=\dfrac{123-\left(y+z\right)}{y+z}+\dfrac{123-\left(z+x\right)}{z+x}+\dfrac{123-\left(y+x\right)}{y+x}\)\(\Rightarrow P=123\left(\dfrac{1}{y+z}+\dfrac{1}{x+y}+\dfrac{1}{z+x}\right)-3\)

\(\Rightarrow P=123.\dfrac{1}{45}-3\)

\(\Rightarrow P=-\dfrac{4}{15}\)

14 tháng 3 2017

cảm ơn bạn nha

18 tháng 8 2017

a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)

\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)

\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)

Đến đây tự làm tiếp nhé

b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)

=> x = 75, y = 50, z = 30

c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)

\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)

\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)

\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)

=> x=... , y=... , z=...

d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)

Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3

Với k = 3 => x = 6, y = 15

Với k = -3 => x = -6, y = -15

Vậy...

e, Tương tự câu d

18 tháng 8 2017

b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)

=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)

     \(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)

      \(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)

10 tháng 10 2019

\(\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\) ; \(\frac{y}{z}=\frac{4}{3}\Rightarrow\frac{y}{4}=\frac{z}{3}\)

ta có :

\(\frac{x}{3}=\frac{y}{5}\)

\(\frac{y}{4}=\frac{z}{3}\)

\(\Rightarrow\frac{x}{12}=\frac{y}{20}=\frac{z}{15}\)

áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{x}{12}=\frac{y}{20}=\frac{z}{15}=\frac{4x}{48}=\frac{2z}{30}=\frac{4x-y+2z}{48-20+30}=\frac{116}{58}=2\)

\(\frac{x}{12}=3\Rightarrow x=36\)

\(\frac{y}{20}=2\Rightarrow y=40\)

\(\frac{z}{15}=2\Rightarrow z=30\)

18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

GIÚP MÌNH VS!! MÌNH CẦN GẤP!!!! Câu 1: Biểu thức nào sau đây là đơn thức, chọn câu trả lời đúng: 1. A. (5-x)x2 B. -3xy C. 4x+3y2 D. 5y2-z 2. A. \(\frac{-5}{9}\)x2y B. \(\frac{x}{y}\) C. x+\(\frac{1}{y}\) D. (x+y)z2 3. A. 5-x B. \(\frac{1}{x}-\frac{5}{y}\) C. \(\frac{2}{xy}\) D. -5 4. A. \(\frac{2}{5}\)+x2y B. 9x2(y+z) C. 92yz D....
Đọc tiếp

GIÚP MÌNH VS!! MÌNH CẦN GẤP!!!!

Câu 1: Biểu thức nào sau đây là đơn thức, chọn câu trả lời đúng:

1. A. (5-x)x2 B. -3xy C. 4x+3y2 D. 5y2-z

2. A. \(\frac{-5}{9}\)x2y B. \(\frac{x}{y}\) C. x+\(\frac{1}{y}\) D. (x+y)z2

3. A. 5-x B. \(\frac{1}{x}-\frac{5}{y}\) C. \(\frac{2}{xy}\) D. -5

4. A. \(\frac{2}{5}\)+x2y B. 9x2(y+z) C. 92yz D. 1-\(\frac{5}{9}\)x3

Câu 2: Biểu thức nào không phải là đơn thức, chọn câu trả lời đúng:

1. A.\(\frac{7}{2}\) B. 2xy3 C. 7+2x2y D. -3

2. A. 2+5xy2 B. \(\frac{3}{4}\)x2y5 C. 3x2y D. (x+2y)z

3. A. 5-x B. xy C. 3x2y D. -35.5

4. A. 13.3 B. (5-9x2)y C.5x2y D. 88

Câu 3: Cho biết phần hệ số, phần biến của đơn thức 2,5x2y, chọn câu trả lời đúng:

A. Phần hệ số: 2,5; phần biến: x2y B. Phần hệ số: 2,5; phần biến: x2

C. Phần hệ số: 2; phần biến:x2y D. Phần hệ số: 2,5; phần biến: y

Câu 4: Tính giá trị của biểu thức 2,5x2y tại x=1 và y=-1

A. -1,5 B. -2,5 C. 1,5 D. 2,5

Câu 5: Tính tích của hai đơn thức \(\frac{1}{4}\)x3y và -2x3y5, rồi tìm bậc cùa đơn thức thu được, chọn câu trả lời đúng:

A. \(\frac{-1}{2}\)x6y6, bậc bằng 12 B. \(\frac{-1}{2}\)x6y6, bậc bằng 6

C. -2x6y6, bậc bằng 12 C. -2x6y6, bậc bằng 6

Câu 6: Thu gọn đơn thức 6x.(-8x2y).(9x3y2z) rồi chỉ ra phần hệ số và bậc của chúng, chọn câu trả lời đúng:

A. Hệ số: 243, bậc bằng 10 B. Hệ số: -243, bậc bằng 10

C. Hệ số: 243, bậc bằng 12 D. Hệ số: -243, bậc bằng 12

2
28 tháng 4 2020

Câu 1:

1)B.\(-3xy\)

2)A.\(\frac{-5}{9}x^2y\) và B.\(\frac{x}{y}\)

3)C.\(\frac{2}{xy}\) và D.\(-5\)

4)C.\(9^2yz\)

Câu 2:

1)C.\(7+2x^2y\)

2)A.\(2+5xy^2\) và D.\(\left(x+2y\right)z\)

3)A.\(5-x\) và D.\(-35.5\)

4)A.\(13.3\) và B.\(\left(5-9x^2\right)y\)

Câu 3:A.Phần hệ số:2,5;phần biến:\(x^2y\)

Câu 4:B.\(-2,5\)

Câu 5:A.\(-\frac{1}{2}x^6y^6\) ,bậc bằng 12

Câu 6:B.Hệ số:-243,bậc bằng 10

Nhớ tick cho mình nha!

27 tháng 4 2020

nhìn có vẻ không rõ nên các bạn ráng giúp mình nha!!!!

22 tháng 10 2018

a) Ta có:

\(\frac{x}{4}=\frac{y}{5}\)và \(x+y=18\)

AĐTCCDTSBN(Áp dụng tính chất của dãy tỉ số bằng nhau)

\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{18}{9}=2\)

\(\frac{x}{4}=2\Rightarrow x=2.4=8\)

\(\frac{y}{5}=2\Rightarrow y=2.5=10\)

Bài kia tương tự

22 tháng 10 2018

a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{18}{9}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=2\\\frac{y}{5}=2\end{cases}\Rightarrow\hept{\begin{cases}x=8\\y=10\end{cases}}}\)

Vậy x = 8; y = 10

b) Ta có : 

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{12}=\frac{x+y+z}{8+12+18}=\frac{20}{38}=\frac{10}{19}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{10}{19}\\\frac{y}{12}=\frac{10}{19}\\\frac{z}{18}=\frac{10}{19}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{80}{19}\\y=\frac{120}{19}\\z=\frac{180}{19}\end{cases}}}\)

Vậy \(x=\frac{80}{19};y=\frac{120}{19};z=\frac{180}{19}\)

Câu 1: 

c: 2x=3y

nên x/3=y/2

=>x/9=y/6

5y=3z

nên y/3=z/5

=>y/6=z/10

=>x/9=y/6=z/10

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{3x+3y-7z}{3\cdot9+3\cdot6-7\cdot10}=\dfrac{35}{-25}=-\dfrac{7}{5}\)

Do đó: x=-63/5; y=-42/5; z=-14

Bài 2:

Gọi ba số lần lượt là a,b,c

Theo đề, ta có: 4/3a=b=3/4c

\(\Leftrightarrow\dfrac{a}{\dfrac{3}{4}}=\dfrac{b}{1}=\dfrac{c}{\dfrac{4}{3}}\)

\(\Leftrightarrow\dfrac{a}{9}=\dfrac{b}{12}=\dfrac{c}{16}\)

Đặt \(\dfrac{a}{9}=\dfrac{b}{12}=\dfrac{c}{16}=k\)

=>a=9k; b=12k; c=16k

Theo đề, ta có: \(a^2+b^2+c^2=481\)

\(\Leftrightarrow81k^2+144k^2+256k^2=481\)

=>k2=1

Trường hợp 1: k=1

=>a=9; b=12; c=16

Trường hợp 2: k=-1

=>a=-9; b=-12; c=-16

 

1 tháng 9 2019

Đáp án đúng nhưng cách làm này là sai

1 tháng 9 2019

bày em cách làm với được không ạ? em tự suy ra chứ thầy cô chưa bày j cả nên là em cx chưa hiểu cho lắm mong anh giúp đỡ ạ

1 tháng 1 2020

c)

1 tháng 1 2020

cảm ơn bạnhihi