Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}+\frac{40}{4-x^2}\)
a) ĐKXĐ : \(x\ne\pm2\)
\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}+\frac{40}{4-x^2}\)
\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}-\frac{40}{x^2-4}\)
\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}-\frac{40}{\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{5x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{\left(3x-23\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{40}{\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{5x^2-10x}{\left(x+2\right)\left(x-2\right)}-\frac{\left(3x^2-17x-46\right)}{\left(x+2\right)\left(x-2\right)}-\frac{40}{\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{5x^2-10x-\left(3x^2-17x-46\right)-40}{\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{5x^2-10x-3x^2+17x+46-40}{\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{2x^2+7x+6}{\left(x+2\right)\left(x-2\right)}=\frac{\left(x+2\right)\left(2x+3\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2x+3}{x-2}\)
b) x2 - 1 = 0 <=> x2 = 1 <=> x = ±1
Với x = 1
\(B=\frac{2\cdot1+3}{1-2}=-5\)
Với x = -1
\(B=\frac{2\cdot\left(-1\right)+3}{\left(-1\right)-2}=-\frac{1}{3}\)
Dài quá trôi hết đề khỏi màn hình: nhìn thấy câu nào giải cấu ấy
Bài 4:
\(A=\frac{\left(x-1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
a) DK x khác +-1
b) \(dk\left(a\right)\Rightarrow A=\frac{2}{\left(x+1\right)}\)
c) x+1 phải thuộc Ước của 2=> x=(-3,-2,0))
1. a) Biểu thức a có nghĩa \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x+2\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
Vậy vs \(x\ne2,x\ne-2\) thì bt a có nghĩa
b) \(A=\frac{x}{x+2}+\frac{4-2x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-2x+4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x-2}{x+2}\)
c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\)
\(\Leftrightarrow x-2=\left(x+2\right).0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)(ko thỏa mãn điều kiện )
=> ko có gía trị nào của x để A=0
\(ĐKXĐ:x\ne-3;2\)
\(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}-\frac{1}{x-2}=\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x+2\right)}-\frac{1}{x-2}\)
\(=\frac{x^2+4x+4}{\left(x+3\right)\left(x+2\right)}-\frac{5}{\left(x+3\right)\left(x+2\right)}-\frac{x+3}{\left(x+2\right)\left(x+3\right)}\)
\(=\frac{x^2+4x+4-5-x-3}{\left(x+2\right)\left(x+3\right)}=\frac{x^2+3x-4}{\left(x+3\right)\left(x+2\right)}=\frac{\left(x+4\right)\left(x-1\right)}{\left(x+3\right)\left(x+2\right)}\)
\(x^2-9=0\Leftrightarrow x=3\left(vì:x\ne-3\right)\)
\(\Rightarrow P=\frac{7}{15}\)
\(P\inℤ\Leftrightarrow x^2+3x-4⋮x^2+5x+6\Leftrightarrow2x+10⋮x^2+5x+6\Leftrightarrow12⋮x^2+5xx+6\)
\(................\left(dễ\right)\)
P/s: shitbo sai rồi nha bạn!Nếu không tin thì thay x = 3 vào P ban đầu và giá trị P sau khi rút gọn sẽ thấy sự khác biệt =)
ĐK: \(x\ne-3;x\ne2\)
a) \(P=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}-\frac{1}{x-2}\)
\(=\frac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)
b) \(x^2-9=0\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)
Thay vào điều kiện,tìm loại x = -3 .Tìm được x =3
Ta có: \(P=\frac{x-4}{x-2}=\frac{3-4}{3-2}=-1\)
c)Ta có: \(P=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\)
Để P có giá trị nguyên thì \(\frac{2}{x-2}\) nguyên hay \(x-2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Suy ra \(x=\left\{0;1;3;4\right\}\)
Bài 1:
a: \(A=\dfrac{x+1+x}{x+1}:\dfrac{3x^2+x^2-1}{x^2-1}\)
\(=\dfrac{2x+1}{x+1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{x-1}{2x-1}\)
b: Thay x=1/3 vào A, ta được:
\(A=\left(\dfrac{1}{3}-1\right):\left(\dfrac{2}{3}-1\right)=\dfrac{-2}{3}:\dfrac{-1}{3}=2\)
a)(x+y)3-3xy(x+y)
\(=\left(x+y\right)\left(x^2+xy+y^2\right)-3xy\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2+xy+y^2-3xy\right)\)
\(=\left(x+y\right)\left(x^2-2xy+y^2\right)\)
c)\(\left(a+b\right)^2-\left(a-b\right)^2-4ab\)
\(=\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)+\left(a-b\right)\right]-4ab\)
\(=\left(a+b-a+b\right)\left(a+b+a-b\right)-4ab\)
\(=2b.2a-4ab\)
\(=4ab-4ab=0\)
a) thay x = -3 vào biểu thức, ta có:
\(A=\frac{\left(-3\right)^2+2.\left(-3\right)}{\left(-3\right)+1}=-\frac{3}{2}\)
b) M = A.B
\(M=\left(-\frac{3}{2}\right)\left(\frac{x+2}{x-2}-\frac{x-2}{x+2}+\frac{16}{4-x^2}\right)\)
\(M=-\frac{3\left(\frac{x+2}{x-2}-\frac{x-2}{x+2}+\frac{16}{4-x^2}\right)}{2}\)
\(M=-\frac{3.\frac{8}{x+2}}{2}\)
\(M=-\frac{\frac{24}{x+2}}{2}\)
\(M=-\frac{24}{2\left(x+2\right)}\)
\(M=-\frac{12}{x+2}\)
Bài làm
\(P=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
a) ĐKXĐ : \(\hept{\begin{cases}x\ne-3\\x\ne2\end{cases}}\)
\(=\frac{x+2}{x+3}-\frac{5}{x^2+3x-2x-6}-\frac{1}{x-2}\)
\(=\frac{x+2}{x+3}-\frac{5}{x\left(x+3\right)-2\left(x+3\right)}-\frac{1}{x-2}\)
\(=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x^2-4x+3x-12}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x\left(x-4\right)+3\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)
b) x2 - 9 = 0 <=> ( x - 3 )( x + 3 ) = 0
<=> \(\orbr{\begin{cases}x=3\left(nhan\right)\\x=-3\left(loai\right)\end{cases}}\)
x = 3 => \(P=\frac{3-4}{3-2}=-1\)
c) \(P=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\)
Để P đạt giá trị nguyên => \(\frac{2}{x-2}\)nguyên
=> \(2⋮x-2\)
=> \(x-2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x-2 | 1 | -1 | 2 | -2 |
x | 3 | 1 | 4 | 0 |
Vậy ...