Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}}{1-x}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
\(A=\left(\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)\(\div\left(\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(A=\left(\frac{x+2\sqrt{x}+1+x-\sqrt{x}-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\frac{2x+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{4\sqrt{x}}\)
\(A=\frac{2x+1}{4\sqrt{x}}\)
c, \(A=\frac{2x+1}{4\sqrt{x}}=\frac{\sqrt{x}}{2}+\frac{1}{4\sqrt{x}}\)
ap dụng cô si ta có \(\frac{\sqrt{x}}{2}+\frac{1}{4\sqrt{x}}\ge2\sqrt{\frac{\sqrt{x}}{2}\cdot\frac{1}{4\sqrt{x}}}=\frac{\sqrt{2}}{2}\)
dấu = xảy ra khi \(\frac{\sqrt{x}}{2}=\frac{1}{4\sqrt{x}}\Leftrightarrow x=\frac{1}{2}\) (tm)
\(\left[\frac{2}{3\sqrt{x}}-\frac{2}{\sqrt{x}+1}.\left(\frac{\sqrt{x}+1}{3\sqrt{x}}-\sqrt{x}-1\right)\right]:\frac{\sqrt{x}-1}{\sqrt{x}}\)
\(=\left[\frac{2}{3\sqrt{x}}-\frac{2}{\sqrt{x}+1}.\left(\frac{\sqrt{x}+1-3x-3\sqrt{x}}{3\sqrt{x}}\right)\right].\frac{\sqrt{x}}{\sqrt{x}-1}\)
\(=\left[\frac{2}{3\sqrt{x}}-\frac{2}{\sqrt{x}+1}.\frac{-3x-2\sqrt{x}+1}{3\sqrt{x}}\right].\frac{\sqrt{x}}{\sqrt{x}-1}\)
\(=\left[\frac{2}{3\sqrt{x}}-\frac{2}{\sqrt{x}+1}.\frac{\left(\sqrt{x}+1\right)\left(-3\sqrt{x}+1\right)}{3\sqrt{x}}\right].\frac{\sqrt{x}}{\sqrt{x}-1}\)
\(=\left[\frac{2}{3\sqrt{x}}-\frac{-6\sqrt{x}+2}{3\sqrt{x}}\right].\frac{\sqrt{x}}{\sqrt{x}-1}\)
\(=\frac{2\sqrt{x}}{\sqrt{x}-1}\)
Bài làm:
Ta có:
\(P=\left(1-\frac{x-3\sqrt{x}}{x-9}\right)\div\left(\frac{\sqrt{x}-9}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\)
\(P=\frac{x-9-x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\div\left[\frac{\left(9-\sqrt{x}\right)\left(3+\sqrt{x}\right)+\left(\sqrt{x}-2\right)^2-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]\)
\(P=\frac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\div\frac{-x+6\sqrt{x}+27+x-4\sqrt{x}+2-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{3}{\sqrt{x}+3}\div\frac{x+2\sqrt{x}+20}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{3}{\sqrt{x}+3}\cdot\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{x+2\sqrt{x}+20}\)
\(P=\frac{3\left(\sqrt{x}-2\right)}{x+2\sqrt{x}+20}=\frac{3\sqrt{x}-6}{x+2\sqrt{x}+20}\)
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-\sqrt{x}}\right):\frac{\sqrt{x+1}}{3}\)
\(P=\left(\frac{\left(\sqrt{x}\right)^2}{\sqrt{x}.\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right).\frac{3}{\sqrt{x}+1}\)
\(P=\frac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{3}{\sqrt{x}+1}\)
\(P=\frac{\sqrt{x}.\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{3}{\sqrt{x}+1}\)
\(P=\frac{3}{\sqrt{x}-1}\)