Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với a,b,x,y không âm ta có
a,\(ab+b\sqrt{a}+\sqrt{a}+1\)
\(=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)\)
\(=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)
b, \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)+\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)^2\)
a. \(ab+b\sqrt{a}+\sqrt{a}+1=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)
b. \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)+\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)=\left(\sqrt{x}-\sqrt{y}\right)\left(x+2\sqrt{xy}+y\right)=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)^2\)
\(a)\) \(xy-y\sqrt{x}+\sqrt{x}-1\)
= \(y\sqrt{x}.(\sqrt{x}-1)+\sqrt{x}-1\)
=\((\sqrt{x}-1).(y\sqrt{x}+1)\).
\(b)\)\(\sqrt{ax}-\sqrt{by}+\sqrt{bx}-\sqrt{ay}\)
=\(\sqrt{a}.\sqrt{x}-\sqrt{b}.\sqrt{y}+\sqrt{b}.\sqrt{x}-\sqrt{a}.\sqrt{y}\)
=\(\sqrt{a}.\sqrt{x}+\sqrt{b}.\sqrt{x}-\sqrt{a}.\sqrt{y}-\sqrt{b}.\sqrt{y}\)
=\(\sqrt{x}.(\sqrt{a}+\sqrt{b})-\sqrt{y}.(\sqrt{a}+\sqrt{b})\)
=\((\sqrt{x}-\sqrt{y}).(\sqrt{a}+\sqrt{b})\).
\(c)\)\(\sqrt{a+b}+\sqrt{a^2-b^2}\)
=\(\sqrt{a+b}+\sqrt{(a+b).(a-b)}\)
=\(\sqrt{a+b}+\sqrt{a+b}.\sqrt{a-b}\)
=\(\sqrt{a+b}.\left(1+\sqrt{a-b}\right)\).
\(d)\) \(12-\sqrt{x}-x\)
=\(12-4\sqrt{x}+3\sqrt{x}-x\)
=\(4.\left(3-\sqrt{x}\right)+\sqrt{x}\left(3-\sqrt{x}\right)\)
=\(\left(3-\sqrt{x}\right).\left(4+\sqrt{3}\right)\).
12 - √x - x
= 16 - x - 4 - √x (tách 12 = 16 - 4 và đổi vị trí)
= [42 - (√x)2] - (4 + √x)
= (4 - √x)(4 + √x) - (4 + √x)
= (4 + √x)(4 - √x - 1)
= (4 + √x)(3 - √x)
xy - y√x + √x - 1
= (√x)2.y - y√x + √x - 1
= y√x(√x - 1) + √x - 1
= (√x - 1)(y√x + 1) với x ≥ 1
a, \(ab+b\sqrt{a}+\sqrt{a}+1=\sqrt{a}b\left(\sqrt{a}+1\right)+\sqrt{a}+1\)
\(=\left(b\sqrt{a}+1\right)\left(\sqrt{a}+1\right)\)
b, \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)
\(=\sqrt{x^2}\left(\sqrt{x}+\sqrt{y}\right)-\sqrt{y^2}\left(\sqrt{y}+\sqrt{x}\right)=\left(\left|x\right|-\left|y\right|\right)\left(\sqrt{x}+\sqrt{y}\right)\)
= √x(√a + √b) - √y(√a + √b)
= (√a + √b)(√x - √y) (với x, y, a và b đều không âm)
d: \(=-\left(x+\sqrt{x}-12\right)=-\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)\)
a) xy - y√x + √x - 1
= (√x)2.y - y√x + √x - 1
= y√x(√x - 1) + √x - 1
= (√x - 1)(y√x + 1) với x ≥ 1
= √x(√a + √b) - √y(√a + √b)
= (√a + √b)(√x - √y) (với x, y, a và b đều không âm)
(với a + b, a - b đều không âm)
d) 12 - √x - x
= 16 - x - 4 - √x (tách 12 = 16 - 4 và đổi vị trí)
= [42 - (√x)2] - (4 + √x)
= (4 - √x)(4 + √x) - (4 + √x)
= (4 + √x)(4 - √x - 1)
= (4 + √x)(3 - √x)