Phân tích các đa thức sau thành nhân tử:

a) 2xy + 3z + 6...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

a) Cách 1.

Ta có 2xy + 3z + 6y + xz = (2xy + xz) + (3z + 6y)

= x(2 y + z)+3(z + 2 y) = (z + 2y)(x + 3).

Cách 2.

Ta có 2xy + 3z + 6y + xz = (2x1/ + 6y) + (3z + xz)

= 2y(x + 3) + z(3 + x) = (z + 2y)(x + 3).

b) Biến đổi được a 4   -   9 rt 3   +   a 2 -9a = (a- 9)a( a 2  +1).

c) Biến đổi được 3 x 2  + 5y - 3xy + (-5x) = (x - y)(3x - 5).

d) Biến đổi được  x 2  - (a + b)x + ab = (x- a)(x - b).

e) Ta có 4 x 2 - 4xy + y 2   –   9 t 2 =  ( 2 x   -   y ) 2   -   ( 3 t ) 2

= (2x - y - 3t )(2x - y + 31).

g) Ta có  x 3   -   3 x 2 y   +   3 xy 2   -   y 3   -   z 3

= ( x   -   y ) 3   -   z 3 = (x - y - z)( x 2   +   y 2   +   z 2  - 2xy + xz - yz).

h) Ta có x 2   -   y 2 + 8x + 6y+ 7 = ( x 2  +8x + 16) - ( y 2  - 6y+ 9)

= ( x   +   4 ) 2   - ( y - 3 ) 2  =(x-y + 7)(x + y + l).

Câu 2 nha

\(a,x^4+2x^3+x^2\)

\(=x^2\left(x^2+2x+1\right)\)

\(=x^2\left(x+1\right)^2\)

\(c,x^2-x+3x^2y+3xy^2+y^3-y\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)

27 tháng 10 2021

helpppppp

11 tháng 10 2017

1)

a) \(x^2-xy+x-y=x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(x+1\right)\)

b) \(xz+yz-5\left(x+y\right)=z\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(z-5\right)\)

c) \(3x^2-3xy-5x+5y=\left(3x^2-3xy\right)-\left(5x-5y\right)=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)

11 tháng 10 2017

Bài 2:

a) \(x^2+4x-y^2+4=\left(x^2+2\cdot x\cdot2+2^2\right)-y^2=\left(x+2\right)^2-y^2=\left(x-y+2\right)\left(x+y+2\right)\)

b) \(3x^2+6xy+3y^2-3z^2=3\left(x^2+2xy+y^2-z^2\right)=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y-z\right)\left(x+y+z\right)\)

c) \(x^2-2xy+y^2-z^2+2zt-t^2=\left(x-y\right)^2-\left(z-t\right)^2=\left(x-y-z+t\right)\left(x-y+z-t\right)\)

6 tháng 9 2020

a) \(\left(x+y\right)^3-x^3-y^3\)

\(=\left(x+y\right)^3-\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-x^2+xy-y^2\right]\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)\)

\(=3xy\left(x+y\right)\)

b) \(x^2+y^2+2xy+yz+xz\)

\(=\left(x^2+2xy+y^2\right)+\left(yz+xz\right)\)

\(=\left(x+y\right)^2+z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y+z\right)\)

c) \(x^2-10xy-1+25y^2\)

\(=\left(x^2-10xy+25y^2\right)-1\)

\(=\left(x-5y\right)^2-1\)

\(=\left(x-5y-1\right)\left(x-5y+1\right)\)

d) \(ax^2-ax+bx^2-bx+a+b\)

\(=(ax^2+bx^2)-(ax+bx)+(a+b)\)

\(=x^2(a+b)-x(a+b)+(a+b)\)

\(=(a+b)(x^2-x+1)\)

e)\(x^2-2y+3xz+x-2y+3z\)

\(=(x^2+x)-(2xy+2y)+(3xz+3z)\)

\(=x(x+1)-2y(x-1)+3z(x+1)\)

\(=(x+1)(x-2y+3z)\)

f) \(xyz-xy-yz-xz+x+y+z-1\)

\(=(xyz-xy)-(yz-y)-(xz-x)+(z-1)\)

\(=xy(z-1)-y(z-1)-x(z-1)+(z-1)\)

\(=(z-1)(xy-y-x+1)\)

\(=(z-1)[y(x-1)-(x-1)]\)

\(=(z-1)(x-1)(y-1)\)

_Học tốt_

1 tháng 11 2016

Đây, bản full đây thím, tớ thực sự đã kiên nhẫn lắm đấy ...

a)\(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right)=4\left(x^2-y^2-2x+2ay-a^2+1\right)\)

\(=4\left[\left(x^2-2x+1\right)-\left(a^2-2ay+y^2\right)\right]\)

\(=4\left[\left(x-1\right)^2-\left(a-y\right)^2\right]\)

\(=4\left(x-1-a+y\right)\left(x-1+a-y\right)\)

b)\(\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1\right)-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)

\(=\left(x+y-1\right)\left(x^2-xy+y^2+x+y+1\right)\)

c)\(x^3-1+5x^2-5+3x-3=\left(x-1\right)\left(x^2+x+1\right)+5\left(x^2-1\right)+3\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)+5\left(x-1\right)\left(x+1\right)+3\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)+\left(x-1\right)\left(5x+5\right)+3\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1+5x+5+3\right)\)

\(=\left(x-1\right)\left(x^2+6x+9\right)\)

\(=\left(x-1\right)\left(x+3\right)^2\)

d)\(a^5+a^4+a^3+a^2+a+1=a^4\left(a+1\right)+a^2\left(a+1\right)+\left(a+1\right)\)

\(=\left(a+1\right)\left(a^4+a^2+1\right)\)

\(=\left(a+1\right)\left(a^4+2a^2+1-a^2\right)\)

\(=\left(a+1\right)\left[\left(a^2+1\right)^2-a^2\right]\)

\(=\left(a+1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)\)

e)\(x^3-3x^2+3x-1-y^3=\left(x-1\right)^3-y^3\)

\(=\left(x-1-y\right)\left[\left(x-1\right)^2+\left(x-1\right)y+y^2\right]\)

\(=\left(x-1-y\right)\left(x^2-2x+1+xy-y+y^2\right)\)

f)\(5x^3-3x^2y-45xy^2+27y^3=5x\left(x^2-9y^2\right)-3y\left(x^2-9y^2\right)\)

\(=\left(x^2-9y^2\right)\left(5x-3y\right)\)

\(=\left(x-3y\right)\left(x+3y\right)\left(5x-3y\right)\)

g)\(3x^2\left(a-b+c\right)+36xy\left(a-b+c\right)+108y^2\left(a-b+c\right)\)

\(=\left(a-b+c\right)\left(3x^2+36xy+108y^2\right)\)

\(=3\left(a-b+c\right)\left(x^2+12xy+36y^2\right)\)

\(=3\left(a-b+c\right)\left(x+6y\right)^2\)

1 tháng 11 2016

a/ \(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right)\)

\(=\left(4x^2-8x+4\right)-\left(4y^2-8ay+4a^2\right)\)

\(=\left(2x-2\right)^2-\left(2y-2a\right)^2=\left(2x-2+2y-2a\right)\left(2x-2-2y+2a\right)\)

b/ \(\left(x+y\right)^3-1-3xy\left(x+y-1\right)=\left(x+y-1\right)\left(x^2+y^2+2xy+x+y+1\right)-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)\)

Giải giúp bạn 2 bài tiêu biểu thôi nha

11 tháng 12 2018

\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)

\(3x^2+6xy+3y^2-3z^2=3\left(x^2+2xy+y^2-z^2\right)=3.\left[\left(x+y\right)^2-z^2\right]=3.\left(x+y-z\right)\left(x+y+z\right)\)

\(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)

5 tháng 8 2019

c) \(x^2+y^2+xz+yz+2xy\)

\(=\left(x+y\right)^2+z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y+z\right)\)

5 tháng 8 2019

b) \(x^3+3x^2-3x-1\)

\(=\left(x^3-1\right)+3x\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+4x+1\right)\)

a) = 3x(x-2x+1)

xog a

tốt

Bài làm

a) 3x2 - 6x2 + 3x

= -3x2 + 3x

= 3x( 1 - x )

b) 3x2 + 5x - 3xy - 5y

= ( 3x2 - 3xy ) + ( 5x - 5y )

= 3x( x - y ) + 5( x - y )

= ( x - y )( 3x + 5 )

c) x3 + 2x2 + x

= x( x2 + 2x + 1 )

= x( x2 + 2.x.1 + 12 )

= x( x + 1 )2

d) xy + y2 - x - y

= ( xy - x ) + ( y2 - y )

= x( y - 1 ) + y( y - 1 )

= ( y - 1 )( x +  y )

# Học tốt #

23 tháng 8 2019

k) \(x^3-x+3x^2+3xt^2+y^3-y\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)

\(=\left(x+y\right)\left(x+y+1\right)\left(x+y-1\right)\)

23 tháng 8 2019

h) \(a^3-a^2x-ay+xy\)

\(=a^2\left(a-x\right)-y\left(a-x\right)\)

\(=\left(a^2-y\right)\left(a-x\right)\)

13 tháng 10 2019

\(e,-5x+x^2-14\)

\(=x^2+2x-7x-14\)

\(=x\left(x+2\right)-7\left(x+2\right)\)

\(=\left(x+2\right)\left(x-7\right)\)

\(f,x^3+8+6x\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+2x+4\right)+6x\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+8x+4\right)\)

\(g,15x^2-7xy-2y^2\)

\(=15x^2+3xy-10xy-2y^2\)

\(=3\left(5x+y\right)-2y\left(5x+y\right)\)

\(=\left(5x+y\right)\left(3-2y\right)\)

\(h,3x^2-16x+5\)

\(=3x^2-x-15x+5\)

\(=x\left(3x-1\right)+5\left(3x-1\right)\)

\(=\left(3x-1\right)\left(x+5\right)\)

13 tháng 10 2019

\(a,x^3+2x^2y+xy^2=x\left(x^2+2xy+y^2\right)\)

\(=x\left(x+y\right)^2\)

\(b,4x^2-9y^2+4x-6y\)

\(=4x^2+4x+1-\left(9y^2+6y+1\right)\)

\(=\left(2x+1\right)^2-\left(3y+1\right)^2\)

\(=\left(2x-3y\right)\left(2x+3y+2\right)\)

\(c,-x^2+5x+2xy-5y-y^2\)

\(=-\left(x^2-2xy+y^2\right)+5\left(x-y\right)\)

\(=-\left(x-y\right)^2+5\left(x-y\right)\)

\(=\left(x-y\right)\left(y-x+5\right)\)

\(d,x^2+4x-12\)

\(=x^2-2x+6x-12\)

\(=x\left(x-2\right)+6\left(x-2\right)\)

\(=\left(x-2\right)\left(x+6\right)\)