\(x^2-xy+x-y\)

b,

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2017

1)

a) \(x^2-xy+x-y=x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(x+1\right)\)

b) \(xz+yz-5\left(x+y\right)=z\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(z-5\right)\)

c) \(3x^2-3xy-5x+5y=\left(3x^2-3xy\right)-\left(5x-5y\right)=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)

11 tháng 10 2017

Bài 2:

a) \(x^2+4x-y^2+4=\left(x^2+2\cdot x\cdot2+2^2\right)-y^2=\left(x+2\right)^2-y^2=\left(x-y+2\right)\left(x+y+2\right)\)

b) \(3x^2+6xy+3y^2-3z^2=3\left(x^2+2xy+y^2-z^2\right)=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y-z\right)\left(x+y+z\right)\)

c) \(x^2-2xy+y^2-z^2+2zt-t^2=\left(x-y\right)^2-\left(z-t\right)^2=\left(x-y-z+t\right)\left(x-y+z-t\right)\)

20 tháng 4 2017

Bài giải:

a) x2 – xy + x – y = (x2 – xy) + (x - y)

= x(x - y) + (x -y)

= (x - y)(x + 1)

b) xz + yz – 5(x + y) = z(x + y) - 5(x + y)

= (x + y)(z - 5)

c) 3x2 – 3xy – 5x + 5y = (3x2 – 3xy) - (5x - 5y)

= 3x(x - y) -5(x - y) = (x - y)(3x - 5).

28 tháng 6 2017

\(a) x^2 - xy+x-y\) \(= (x^2 - xy) + ( x- y) \)

\(=x(x-y) + (x-y)\)

\(= (x-y) (x+1)\)

\(b) xz + yz - 5(x+y)\) \(= (xz + yz) - 5(x+y)\)

\(= z(x+y) - 5(x+y)\)

\(= (x+y) (z-5)\)

\(c) 3x^2 - 3xy - 5x +5y = (3x^2-3xy) - (5x-5y)\)

\(= 3x(x-y) - 5(x-y)\)

\(= (x-y)(3x-5)\)

Câu 2 nha

\(a,x^4+2x^3+x^2\)

\(=x^2\left(x^2+2x+1\right)\)

\(=x^2\left(x+1\right)^2\)

\(c,x^2-x+3x^2y+3xy^2+y^3-y\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)

1a) (x - 2y) (x2 - 2xy + y2)

= (x - 2y) (x - y)2

= x2 - xy - 2xy + 2y2

= (x2 - xy) - (2xy - 2y2)

= x (x - y) - 2y (x - y)

= (x - y) (x - 2y)

2a) x (x - 3) - y (3 - x)

= x (x - 3) + y (x - 3)

= (x - 3) (x + y)

b) 3x2 - 5x - 3xy + 5y

= (3x2 - 3xy) - (5x - 5y)

= 3x (x - y) - 5 (x - y)

= (x - y) (3x - 5)

3) 12x (3 - 4x) + 7 (4x - 3) = 0

12x (3 - 4x) - 7 (3 - 4x) = 0

(3 - 4x) (12x - 7) = 0

=> 3 - 4x = 0 hoặc 12x - 7 = 0

* 3 - 4x = 0 => x = \(\frac{3}{4}\)

* 12x - 7 = 0 => x = \(\frac{7}{12}\)

Vậy x =\(\frac{3}{4}\)hoặc x =\(\frac{7}{12}\)

5 tháng 10 2020

a) 5x2 - 5xy + 7y - 7x = ( 5x2 - 5xy ) - ( 7x - 7y ) = 5x( x - y ) - 7( x - y ) = ( x - y )( 5x - 7 )

b) x2 - y2 + 2x + 1 = ( x2 + 2x + 1 ) - y2 = ( x + 1 )2 - y2 = ( x - y + 1 )( x + y + 1 )

c) 3x2 + 6xy + 3y2 - 3z2 = 3( x2 + 2xy + y2 - z2 ) = 3[ ( x2 + 2xy + y2 ) - z2 ] = 3[ ( x + y )2 - z2 ] = 3( x + y - z )( x + y + z )

d) ab( x2 + y2 ) + xy( a2 + b2 ) = abx2 + aby2 + a2xy + b2xy

                                                = ( a2xy + abx2 ) + ( aby2 + b2xy )

                                                = ax( ay + bx ) + by( ay + bx )

                                                = ( ay + bx )( ax + by )

31 tháng 8 2018

a)\(4x^4+y^4=\left(4x^4+y^4+4x^2y^2\right)-4x^2y^2\)

\(=\left(2x^2+y^2\right)^2-\left(2xy\right)^2\)

\(=\left(2x^2+y^2-2xy\right)\left(2x^2+y^2+2xy\right)\)

b)\(\left(x^2-3x-1\right)^2-12\left(x^2-3x-1\right)+27\)

Đặt x^2 - 3x - 1 = A

\(\Rightarrow A^2-12A+27=\left(A^2-12A+36\right)-9\)

\(=\left(A-6\right)^2-9=\left(A-6-3\right)\left(A-6+3\right)\)

\(=\left(A-9\right)\left(A-3\right)\)

Hay \(=\left(x^2-3x-1-9\right)\left(x^2-3x-1-3\right)\)

\(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)

\(=\left(x-5\right)\left(x+2\right)\left(x-4\right)\left(x+1\right)\)

c)\(x^3-x^2-5x+125\)

\(=\left(x^3+5^3\right)-\left(x^2+5x\right)\)

\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

d)\(xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz\)

\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Mình có việc bận nên chỉ đưa được kết quả ý d)  thật lòng mong các bạn tự tham khảo và giải

1 tháng 11 2016

Đây, bản full đây thím, tớ thực sự đã kiên nhẫn lắm đấy ...

a)\(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right)=4\left(x^2-y^2-2x+2ay-a^2+1\right)\)

\(=4\left[\left(x^2-2x+1\right)-\left(a^2-2ay+y^2\right)\right]\)

\(=4\left[\left(x-1\right)^2-\left(a-y\right)^2\right]\)

\(=4\left(x-1-a+y\right)\left(x-1+a-y\right)\)

b)\(\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1\right)-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)

\(=\left(x+y-1\right)\left(x^2-xy+y^2+x+y+1\right)\)

c)\(x^3-1+5x^2-5+3x-3=\left(x-1\right)\left(x^2+x+1\right)+5\left(x^2-1\right)+3\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)+5\left(x-1\right)\left(x+1\right)+3\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)+\left(x-1\right)\left(5x+5\right)+3\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1+5x+5+3\right)\)

\(=\left(x-1\right)\left(x^2+6x+9\right)\)

\(=\left(x-1\right)\left(x+3\right)^2\)

d)\(a^5+a^4+a^3+a^2+a+1=a^4\left(a+1\right)+a^2\left(a+1\right)+\left(a+1\right)\)

\(=\left(a+1\right)\left(a^4+a^2+1\right)\)

\(=\left(a+1\right)\left(a^4+2a^2+1-a^2\right)\)

\(=\left(a+1\right)\left[\left(a^2+1\right)^2-a^2\right]\)

\(=\left(a+1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)\)

e)\(x^3-3x^2+3x-1-y^3=\left(x-1\right)^3-y^3\)

\(=\left(x-1-y\right)\left[\left(x-1\right)^2+\left(x-1\right)y+y^2\right]\)

\(=\left(x-1-y\right)\left(x^2-2x+1+xy-y+y^2\right)\)

f)\(5x^3-3x^2y-45xy^2+27y^3=5x\left(x^2-9y^2\right)-3y\left(x^2-9y^2\right)\)

\(=\left(x^2-9y^2\right)\left(5x-3y\right)\)

\(=\left(x-3y\right)\left(x+3y\right)\left(5x-3y\right)\)

g)\(3x^2\left(a-b+c\right)+36xy\left(a-b+c\right)+108y^2\left(a-b+c\right)\)

\(=\left(a-b+c\right)\left(3x^2+36xy+108y^2\right)\)

\(=3\left(a-b+c\right)\left(x^2+12xy+36y^2\right)\)

\(=3\left(a-b+c\right)\left(x+6y\right)^2\)

1 tháng 11 2016

a/ \(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right)\)

\(=\left(4x^2-8x+4\right)-\left(4y^2-8ay+4a^2\right)\)

\(=\left(2x-2\right)^2-\left(2y-2a\right)^2=\left(2x-2+2y-2a\right)\left(2x-2-2y+2a\right)\)

b/ \(\left(x+y\right)^3-1-3xy\left(x+y-1\right)=\left(x+y-1\right)\left(x^2+y^2+2xy+x+y+1\right)-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)\)

Giải giúp bạn 2 bài tiêu biểu thôi nha