K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Bài 1:

\(A=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}=\sqrt{2+3-2\sqrt{2.3}}+\sqrt{2+3+2\sqrt{2.3}}\)

\(=\sqrt{(\sqrt{2}-\sqrt{3})^2}+\sqrt{\sqrt{2}+\sqrt{3})^2}\)

\(=|\sqrt{2}-\sqrt{3}|+|\sqrt{2}+\sqrt{3}|=\sqrt{3}-\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{3}\)

\(B=(\sqrt{10}+\sqrt{6})\sqrt{8-2\sqrt{15}}\)

\(=(\sqrt{10}+\sqrt{6}).\sqrt{3+5-2\sqrt{3.5}}\)

\(=(\sqrt{10}+\sqrt{6})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)

\(=\sqrt{2}(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})=\sqrt{2}(5-3)=2\sqrt{2}\)

\(C=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)

\(C^2=8+2\sqrt{(4+\sqrt{7})(4-\sqrt{7})}=8+2\sqrt{4^2-7}=8+2.3=14\)

\(\Rightarrow C=\sqrt{14}\)

\(D=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{2}\sqrt{3-\sqrt{5}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{6-2\sqrt{5}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{5+1-2\sqrt{5.1}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{(\sqrt{5}-1)^2}\)

\(=(3+\sqrt{5})(\sqrt{5}-1)^2=(3+\sqrt{5})(6-2\sqrt{5})=2(3+\sqrt{5})(3-\sqrt{5})=2(3^2-5)=8\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Bài 2:

a) Bạn xem lại đề.

b) \(x-2\sqrt{xy}+y=(\sqrt{x})^2-2\sqrt{x}.\sqrt{y}+(\sqrt{y})^2=(\sqrt{x}-\sqrt{y})^2\)

c)

\(\sqrt{xy}+2\sqrt{x}-3\sqrt{y}-6=(\sqrt{x}.\sqrt{y}+2\sqrt{x})-(3\sqrt{y}+6)\)

\(=\sqrt{x}(\sqrt{y}+2)-3(\sqrt{y}+2)=(\sqrt{x}-3)(\sqrt{y}+2)\)

NV
15 tháng 6 2019

ĐKXĐ:...

\(P=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right).\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\sqrt{x}}{\sqrt{x}-1}\right)\frac{\left(\sqrt{x}-1\right)}{\left(2\sqrt{x}-1\right)}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x+\sqrt{x}+1}-\sqrt{x}\right)\frac{1}{\left(2\sqrt{x}-1\right)}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\left(\frac{2x\sqrt{x}+x-\sqrt{x}-x\sqrt{x}-x-\sqrt{x}}{x+\sqrt{x}+1}\right)\frac{1}{\left(2\sqrt{x}-1\right)}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\frac{x\sqrt{x}-2\sqrt{x}}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\frac{x\sqrt{x}-2\sqrt{x}+x\sqrt{x}+x+\sqrt{x}}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}=\frac{2x\sqrt{x}+x-\sqrt{x}}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)

\(=\frac{\left(x+\sqrt{x}\right)\left(2\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}=\frac{x+\sqrt{x}}{x+\sqrt{x}+1}\)

31 tháng 8 2016

a) A= (\(\left(\frac{1+\sqrt{x}}{1+\sqrt{x}}-\frac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x-2}\right)}+\frac{\sqrt{x}+2}{x-2\sqrt{x}-3\sqrt{x}+6}\right)\)

A=\(\left(\frac{1+\sqrt{x}-\sqrt{x}}{1+\sqrt{x}}\right):\left(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)}\right)\)

A= \(\left(\frac{1}{1+\sqrt{x}}\right):\left(\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{x-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)

A=\(\left(\frac{1}{1+\sqrt{x}}\right):\left(\frac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)

A=\(\left(\frac{1}{1+\sqrt{x}}\right):\left(\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)

A=\(\frac{\sqrt{x}-2}{\sqrt{x}+1}\)

30 tháng 8 2016

bạn rút gọc câu a chưa

a: \(A=\dfrac{1}{\sqrt{x}+1}:\left(\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)

\(=\dfrac{1}{\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

b: Để A<0 thì \(\sqrt{x}-2< 0\)

hay 0<x<4

24 tháng 9 2019

what sub