K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 6 2019

ĐKXĐ:...

\(P=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right).\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\sqrt{x}}{\sqrt{x}-1}\right)\frac{\left(\sqrt{x}-1\right)}{\left(2\sqrt{x}-1\right)}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x+\sqrt{x}+1}-\sqrt{x}\right)\frac{1}{\left(2\sqrt{x}-1\right)}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\left(\frac{2x\sqrt{x}+x-\sqrt{x}-x\sqrt{x}-x-\sqrt{x}}{x+\sqrt{x}+1}\right)\frac{1}{\left(2\sqrt{x}-1\right)}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\frac{x\sqrt{x}-2\sqrt{x}}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\frac{x\sqrt{x}-2\sqrt{x}+x\sqrt{x}+x+\sqrt{x}}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}=\frac{2x\sqrt{x}+x-\sqrt{x}}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)

\(=\frac{\left(x+\sqrt{x}\right)\left(2\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}=\frac{x+\sqrt{x}}{x+\sqrt{x}+1}\)

31 tháng 8 2016

a) A= (\(\left(\frac{1+\sqrt{x}}{1+\sqrt{x}}-\frac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x-2}\right)}+\frac{\sqrt{x}+2}{x-2\sqrt{x}-3\sqrt{x}+6}\right)\)

A=\(\left(\frac{1+\sqrt{x}-\sqrt{x}}{1+\sqrt{x}}\right):\left(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)}\right)\)

A= \(\left(\frac{1}{1+\sqrt{x}}\right):\left(\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{x-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)

A=\(\left(\frac{1}{1+\sqrt{x}}\right):\left(\frac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)

A=\(\left(\frac{1}{1+\sqrt{x}}\right):\left(\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)

A=\(\frac{\sqrt{x}-2}{\sqrt{x}+1}\)

30 tháng 8 2016

bạn rút gọc câu a chưa

a: \(A=\dfrac{1}{\sqrt{x}+1}:\left(\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)

\(=\dfrac{1}{\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

b: Để A<0 thì \(\sqrt{x}-2< 0\)

hay 0<x<4

31 tháng 8 2021

\(ĐKXĐ:x\ge0;x\ne1\)

\(B=\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{x}+2}+\frac{\sqrt{x}}{1-x}\)

\(B=\frac{1}{2\left(\sqrt{x}-1\right)}-\frac{1}{2\left(\sqrt{x}+1\right)}+\frac{4\sqrt{x}}{2\left(\sqrt{x}+1\right).2\left(\sqrt{x}-1\right)}\)

\(B=\frac{2\sqrt{x}+2-2\sqrt{x}+2+4\sqrt{x}}{4\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(B=\frac{4\sqrt{x}+4}{4\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{4\left(\sqrt{x}+1\right)}{4\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{1}{\sqrt{x}-1}\)

31 tháng 8 2021

là \(\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{x}+2}+\frac{\sqrt{x}}{1-x}nha toi bi nham\)

4 tháng 11 2019

Sai đề

26 tháng 3 2017

Mình cần người giải giúp bài toán giúp mk ha

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                  <
26 tháng 3 2017

qưertyuio

5 tháng 7 2018

\(\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\frac{16}{\frac{16}{x^2}-\frac{8}{x}+1}}\)\(=\frac{\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}}{\left(\frac{4}{x}-1\right)^2}\)

\(\frac{\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}}{\left(\frac{4}{x}-1\right)^2}\)\(=\frac{\sqrt{x-4}+2+\sqrt{x-4}-2}{\left(\frac{4-x}{x}\right)^2}\)

\(=\frac{2\sqrt{x-4}}{\left(\frac{4-x}{x}\right)^2}=\frac{2x^2\sqrt{x-4}}{\left(x-4\right)^2}=\frac{2x^2}{\sqrt{x-4}^3}\)

5 tháng 7 2018

bài bạn YIM YIM sai nhé, mk làm lại và chỉnh lại đề luôn, bạn tham khảo:

ĐK: \(x>4\)

\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\frac{16}{x^2}-\frac{8}{x}+1}\)

\(=\frac{\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}}{\left(1-\frac{4}{x}\right)^2}\)

\(=\frac{\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|}{\left(\frac{x-4}{x}\right)^2}\)

Nếu \(4< x\le8\)thì:  

   \(A=\frac{\sqrt{x-4}+2+2-\sqrt{x-4}}{\left(\frac{x-4}{x}\right)^2}\)

\(=\frac{4x^2}{\left(x-4\right)^2}\)

Nếu   \(x>8\)thì:

\(A=\frac{\sqrt{x-4}+2+\sqrt{x-4}-2}{\frac{\left(x-4\right)^2}{x^2}}=\frac{2x^2}{\sqrt{x-4}^3}\)

2 tháng 9 2016

ĐKXĐ : \(x\ne\pm1\)

a/ \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{2}{x^2-1}-\frac{x}{x-1}+\frac{1}{x+1}\right)\)

\(=\frac{x^2+2x+1-\left(x^2-2x+1\right)}{\left(x-1\right)\left(x+1\right)}:\frac{2-x\left(x+1\right)+\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=\frac{4x}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{1-x^2}=\frac{4x}{1-x^2}\)

b/ Ta có \(3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\Rightarrow\sqrt{3+\sqrt{8}}=\sqrt{2}+1\)

Suy ra : Nếu x = \(\sqrt{2}+1\) thì \(A=\frac{4\left(\sqrt{2}+1\right)}{1-\left(\sqrt{2}+1\right)^2}=\frac{4\left(\sqrt{2}+1\right)}{-\sqrt{2}.\sqrt{2}\left(\sqrt{2}+1\right)}=-\frac{4}{2}=-2\)

c/ \(A=\sqrt{5}\Rightarrow4x=\sqrt{5}\left(1-x^2\right)\Leftrightarrow\sqrt{5}x^2+4x-\sqrt{5}=0\)

Nhân cả hai vế của pt trên với \(\sqrt{5}\ne0\)

Được \(5x^2+4\sqrt{5}x-5=0\) . Đặt \(t=x\sqrt{5}\) pt trở thành \(t^2+4t-5=0\Leftrightarrow\left(t+5\right)\left(t-1\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}t=1\\t=-5\end{array}\right.\)

Với t = 1 thì \(x=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}\)

Với t = -5 thì \(x=-\frac{5}{\sqrt{5}}=-\sqrt{5}\)

1 tháng 9 2016

\(A=\left[\frac{x^2+2x+1-x^2+2x-1}{x^2-1}\right]:\left[\frac{2-x^2-x+x-1}{x^2-1}\right]=\left[\frac{4x}{x^2-1}\right].\left[\frac{x^2-1}{1-x^2}\right]=\frac{4x}{1-x^2}\)