Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: A
HD Giải: λ = 80 2 π 100 π = 1,6cm
M cùng pha với nguồn A nên MA = d = (được rút ra từ phương trình sóng tại M với d1 = d2 = d)
Ta có điều kiện MA > AO = AB/2 nên
<=> 1,6k > 6
<=> k > 3,75
MA nhỏ nhất nên chọn k = 4
MA = 4.1,6 = 6,4 cm
\(\lambda = v/f = 80/20 = 4cm.\)
\(\triangle \varphi = \pi-0=\pi.\)
Nhận xét: \(BM-AM=(BI+IM)-(AI-IM)=2MI\)
\( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{BM-AM}{\lambda}-\frac{\triangle\varphi}{2\pi})|\\=|2a\cos\pi(\frac{2MI}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{6}{4}-\frac{\pi}{2\pi})| = |-2a|=2a=10 mm.\)
Đáp án C
+ Bước sóng của sóng λ = 2 π v ω = 5 c m
+ Số dãy cực đại giao thoa
Có 7 dãy cực đại ứng với
+ Điều kiện để M cực đại và cùng pha với hai nguồn:
Đáp án A
Ta có ω = 20π → f = 10Hz → λ = v/f = 3 cm.
→ AB = 40 cm = 13λ + λ/3.
Những điểm dao động với biên độ 3 2 cm cách nút những khoảng λ/4.
→ Trên AB có số điểm dao động với biên độ 3 2 cm là: 13.4 + 2 = 54 điểm.
Chọn đáp án B
x A M = A c os ( ω t − 2 π d 1 λ ) x B M = A cos ( ω t + π − 2 π d 1 λ )
phương trình sóng tại M
x M = x A M + x B M = − 2 A sin d 2 + d 1 λ . sin ( ω t − d 2 + d 1 λ π )
Biên độ sóng tại M: A M = 2 A sin d 2 − d 1 λ π ; tại M nếu A M = A 2
⇒ sin d 2 − d 1 λ π = ± 1 2 ⇒ d 2 − d 1 λ π = π 4 + k π 2 ⇒ d 2 − d 1 = λ 4 + k λ 2
Xét trên AB
d 2 A − d 1 A ≤ d 2 − d 1 ≤ d 2 B − d 1 B ⇔ − A B ≤ λ 4 + k λ 2 ≤ A B
Ta có: f = ω 2 π = 10 H z ; λ = v t = 3 c m
⇒ − 20,5 ≤ k ≤ 19,5 ⇒ k = 0, ± 1, ± 2... ± 19, − 20
⇒ có 40 điểm.