K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2018

D E F I K O

a) Xét \(\Delta vuôngKEDva\Delta vuôngDEF\) có:

\(\widehat{E:}chung\)

\(\Rightarrow\Delta KED\) đồng dạng \(\Delta DEF\)

b) Vì \(\Delta KED\) đồng dạng \(\Delta DEF\) (1)

\(\Rightarrow\frac{KE}{DE}=\frac{DE}{EF}\Rightarrow DE.DE=KE.EF\Rightarrow DE^2=KE.EF\)

b2) Xét \(\Delta VuôngKFD\) và \(\Delta vuôngDEF\)có :

\(\widehat{F:}chung\)

\(\Rightarrow\Delta KFD\) đồng dạng \(\Delta DEF\) (2)

từ (1) và (2) suy ra \(\Delta KED\) đồng dạng \(\Delta KFD\) 

\(\Rightarrow\frac{EK}{DK}=\frac{DK}{KF}\Rightarrow DK.DK=KE.KF\Rightarrow DK^2=KE.KF\)

b3) xin lỗi mình chưa bt cách làm

c) \(\Delta DEF\) là tam giác vuông nên:

\(EF^2=DE^2.DF^2\)

\(EF=\sqrt{DE^2.DF^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

Vì EI là đường phân giác của\(\Delta DEF\)

\(\Rightarrow\) \(\frac{DI}{DE}=\frac{IF}{EF}\Rightarrow DI=\frac{DE.IF}{EF}=\frac{3.4}{5}=2,4\left(cm\right)\)

DF=ID+IF\(\Rightarrow IF=DF-DI=4-2,4=1,6\left(cm\right)\)

Vì \(\Delta KED\) đồng dạng \(\Delta DEF\) nên:

\(\frac{DK}{DF}=\frac{DE}{EF}\Rightarrow DK=\frac{DF.DE}{EF}=\frac{4.3}{5}=2,4\left(cm\right)\)

d) Ta có \(DE^2=KE.EF\)

suy ra \(\frac{DE}{KE}=\frac{EF}{DE}\) (4)

Mà \(\frac{DE}{KE}=\frac{OK}{OD}\)( EO là đường phân giác của \(\Delta KED\)) (5)

Lại có \(\frac{EF}{DE}=\frac{IF}{DI}Hay\frac{DE}{EF}=\frac{DI}{IF}\)( EI là đường phân giác của \(\Delta DEF\)) (6)

Từ (4),(5),(6) suy ra \(\frac{DI}{IF}=\frac{OK}{OD}\)

11 tháng 1 2018

a. hạ đương cao AK

suy ra BK=KC=3:2=1.5(cm)

Xét tam giac ABC có góc AKB=90

AK^2+BK^2=AB^2(đl py-ta-go)

AK=\(\dfrac{3\sqrt{3}}{2}\)

SABC=\(\dfrac{1}{2}.\dfrac{3\sqrt{3}}{2}.3=\dfrac{9\sqrt{3}}{4}\)

20 tháng 1 2020

a) Tam giác ABC đều => Kẻ AH vuông góc với BC thì H là trung điểm của BC => BH = BC/2 = a/2

Tính được AH theo định lý Pytago: AH = a32a32

=> Diện tích của tam giác ABC là: 12.a32.a=a23412.a32.a=a234

b) Xét các cặp tam giác bằng nhau dựa trên tam giác ABC đều vào tỉ số đề bài cho (CGC) em sẽ => Tam giác DEF có 3 cạnh bằng nhau => tam giác đều

c) Tam giác DEF và tam giác ABC đồng dạng

=> SDEF/SABC = (DE/AB)2

3 tháng 1 2017

Xét \(\Delta\)ABC có: D là trung điểm của AB

M là trung điểm của BC

\(\Rightarrow\)DM là đường trung bình của \(\Delta ABC\)

\(\Rightarrow DM\)//AC hay DM//AE

Ta có : M là trung điểm của BC

E là trung điểm của CA

\(\Rightarrow\)ME là đường trung bình của \(\Delta\)ABC

\(\Rightarrow\)ME//AB hay ME//AD

Xét tứ giác ADME có: DM//AE(cmt)

ME//AD(cmt)

\(\Rightarrow\)ADME là hình bình hành

Nếu \(\Delta\)ABC cân tại A có đường trung tuyến AM

\(\Rightarrow\)AM đồng thời là tia phân giác của \(\widehat{A}\)

Xét hình bình hành ADME có đường chéo AM là tia phân giác của \(\widehat{A}\)(cmt)

\(\Rightarrow\)ADME là hình thoi

Nếu \(\Delta\)ABC vuông tại A

\(\Rightarrow\widehat{A}=90^0\)

Xét hình bình hành ADME có \(\widehat{A}=90^0\)(cmt)

\(\Rightarrow\)ADME là hình chữ nhật

d/ Xét \(\Delta ABC\) vuông tại A, đường trung tuyến AM

\(\Rightarrow AM=\frac{1}{2}BC\)(Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng 1/2 cạnh huyền)

Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A ta có:

BC2=AB2+AC2

\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}\)

\(\Leftrightarrow BC=\sqrt{6^2+8^2}\)

\(\Leftrightarrow BC=10\left(cm\right)\)

Khi đó:AM=\(\frac{1}{2}.BC=\frac{1}{2}.10=5\left(cm\right)\)

Vậy trong trường hợp tam giác ABC vuông tại A, AB=6cm và AC=8cm thì AM=5cm