K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2019

Đáp án D

Đặt x, y, h lần lượt là chiều dài, chiều rộng và chiều cao mỗi phòng.

Theo giả thiết, ta có x.3y = 1152  → y   =   384 x

Để tiết kiệm chi phí nhất khi diện tích toàn phần nhỏ nhất.

Ta có 

Vì h không đổi nên S t p  nhỏ nhất khi (với x > 0) nhỏ nhất.

Khảo sát  với x > 0 ta được f(x) nhỏ nhất khi x = 24 => y = 16

NV
27 tháng 4 2020

a/ \(y=3x+2\)

b/ \(y=-\frac{1}{4}x+1\)

c/ \(y=\frac{1}{6}x+\frac{3}{2}\)

d/ \(y=-32x-48\)

NV
15 tháng 8 2020

a/

\(0\le sin^2x\le1\Rightarrow-2\le f\left(x\right)\le1\)

\(f\left(x\right)_{min}=-2\) khi \(sin^2x=1\)

\(f\left(x\right)_{max}=1\) khi \(sin^2x=1\)

b/

\(g\left(x\right)=1-cos^2x+3cosx-2=-cos^2x+3cosx-1\)

\(=-cos^2x+3cosx-2+1=\left(cosx-1\right)\left(2-cosx\right)+1\)

Do \(-1\le cosx\le1\Rightarrow\left\{{}\begin{matrix}cosx-1\le0\\2-cosx>0\end{matrix}\right.\)

\(\Rightarrow\left(cosx-1\right)\left(2-cosx\right)\le0\Rightarrow g\left(x\right)\le1\)

\(g\left(x\right)_{max}=1\) khi \(cosx=1\)

\(g\left(x\right)=-cos^2x+3cosx+4-5=\left(cosx+1\right)\left(4-cosx\right)-5\)

\(\left(cosx+1\right)\left(4-cosx\right)\ge0\Rightarrow g\left(x\right)\ge-5\)

\(g\left(x\right)_{min}=-5\) khi \(cosx=-1\)

AH
Akai Haruma
Giáo viên
29 tháng 7 2018

Lời giải:

Em không rõ ở phần tìm đạo hàm theo định nghĩa (lim) hay tìm đạo hàm dựa theo công thức

Thông thường lớp 11 thì thường áp dụng luôn công thức

Áp dụng công thức: \((u^{\alpha})'=\alpha.u'.u^{\alpha-1}\) thì:

\(y=(x+\sqrt{1+x^2})^{\frac{1}{2}}\)

\(\Rightarrow y'=\frac{1}{2}(x+\sqrt{x^2+1})'(x+\sqrt{x^2+1})^{\frac{1}{2}-1}\)

\(=\frac{(x+\sqrt{x^2+1})'}{2\sqrt{x+\sqrt{x^2+1}}}(*)\)

\((x+\sqrt{x^2+1})'=x'+(\sqrt{x^2+1})'=1+((x^2+1)^{\frac{1}{2}})'\)

\(=1+\frac{1}{2}(x^2+1)'(x^2+1)^{\frac{1}{2}-1}\)

\(=1+\frac{1}{2}.2x.\frac{1}{\sqrt{x^2+1}}=1+\frac{x}{\sqrt{x^2+1}}(**)\)

Từ \((*);(**)\Rightarrow y'=\frac{x+\sqrt{x^2+1}}{\sqrt{x^2+1}.2\sqrt{x+\sqrt{x^2+1}}}=\frac{1}{2}\sqrt{\frac{x+\sqrt{x^2+1}}{x^2+1}}\)

8 tháng 12 2018

ta có : \(y'=\left(\sqrt{x+\sqrt{1+x^2}}\right)'=\dfrac{1}{2\sqrt{x+\sqrt{1+x^2}}}\left(x+\sqrt{1+x^2}\right)'\)

\(=\dfrac{1}{2\sqrt{x+\sqrt{1+x^2}}}\left(1+\dfrac{1}{2\sqrt{1+x^2}}\left(1+x^2\right)'\right)\) \(=\dfrac{1}{2\sqrt{x+\sqrt{1+x^2}}}\left(1+\dfrac{2x}{2\sqrt{1+x^2}}\right)\) \(=\dfrac{1}{2\sqrt{x+\sqrt{1+x^2}}}\left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}}\right)=\dfrac{1}{2}\sqrt{\dfrac{x+\sqrt{1+x^2}}{1+x^2}}\)

NV
10 tháng 4 2020

\(a=\lim\limits_{x\rightarrow1^+}\frac{\sqrt{x-1}+\sqrt{x}-1}{\sqrt{\left(x-1\right)\left(x+1\right)}}=\lim\limits_{x\rightarrow1^+}\left(\frac{1}{\sqrt{x+1}}+\frac{x-1}{\left(\sqrt{x}+1\right)\sqrt{\left(x-1\right)\left(x+1\right)}}\right)\)

\(=\lim\limits_{x\rightarrow1^+}\left(\frac{1}{\sqrt{x+1}}+\frac{\sqrt{x-1}}{\left(\sqrt{x}+1\right)\sqrt{x+1}}\right)=\frac{1}{\sqrt{2}}+0=\frac{1}{\sqrt{2}}\)

\(b=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x^{n-1}+x^{n-2}+...+x+1\right)}{\left(x-1\right)\left(x^{m-1}+x^{m-2}+...+x+1\right)}=\lim\limits_{x\rightarrow1}\frac{x^{n-1}+x^{n-2}+...+1}{x^{m-1}+x^{m-2}+...+1}=\frac{n}{m}\)

\(c=\lim\limits_{x\rightarrow1}\frac{x-1+x^2-1+...+x^n-1}{x-1}=\lim\limits_{x\rightarrow1}\frac{x-1}{x-1}+\lim\limits_{\rightarrow1}\frac{x^2-1}{x-1}+...+\lim\limits_{x\rightarrow1}\frac{x^n-1}{x-1}\)

Áp dụng kết quả câu b ta được:

\(c=\frac{1}{1}+\frac{2}{1}+...+\frac{n}{1}=1+2+..+n=\frac{n\left(n+1\right)}{2}\)

10 tháng 4 2020

Cảm ơn bạn nhé!

31 tháng 8 2017

1/
pt<=>tan(3x+2)=tan\(\dfrac{\Pi}{3}\)
<=>x=\(\dfrac{\Pi}{9}\)-\(\dfrac{2}{3}\)+\(\dfrac{k\Pi}{3}\)(k thuộc Z) (*)

mà x\(\in\)(\(-\dfrac{\Pi}{2}\);\(\dfrac{\Pi}{2}\))

<=>\(-\dfrac{\Pi}{2}\)<\(\dfrac{\Pi}{9}\)-\(\dfrac{2}{3}\)+\(\dfrac{k\Pi}{3}\)<\(\dfrac{\Pi}{2}\)(bạn giải bất pt với nghiệm là ''k'' nha)

<=>-1,1296....<k<1,803....

Mà k thuộc Z =>k={-1;01}

Thay các giá trị của k vào (*) ta được:

\(\left[{}\begin{matrix}x=-\dfrac{2\Pi}{9}-\dfrac{2}{3}\\x=\dfrac{\Pi}{9}-\dfrac{2}{3}\\x=\dfrac{4\Pi}{9}-\dfrac{2}{3}\end{matrix}\right.\)

Vậy.............

2/ Là tương tự cho quen nha!

15 tháng 9 2019

sao ra đc -1,1296... vậy