\(f(x)=\begin{cases} {xsinx \ khi \ x\neq0 \\ 0 \ khi \ x=0}\end{cases}\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

a) Giả sử ∆x là số gia của số đối tại x0 = 1. Ta có:

∆y = f(1 + ∆x) - f(1) = (1 + ∆x)2 + (1 + ∆x) - (12+ 1) = 3∆x + (∆x)2;

= 3 + ∆x; = (3 + ∆x) = 3.

Vậy f'(1) = 3.

b) Giả sử ∆x là số gia của số đối tại x0 = 2. Ta có:

∆y = f(2 + ∆x) - f(2) = - = - ;

= - ; = - = - .

Vậy f'(2) = - .

c) Giả sử ∆x là số gia của số đối tại x0 = 0.Ta có:

∆y = f(∆x) - f(0) = - ( -1) = ;

= ; = = -2.

Vậy f'(0) = -2

NV
27 tháng 4 2020

Để hs có đạo hàm trước hết nó phải liên tục

\(\lim\limits_{x\rightarrow2^-}f\left(x\right)=f\left(2\right)=1\)

\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=2b+c+4\)

\(\lim\limits_{x\rightarrow2^-}f\left(x\right)=\lim\limits_{x\rightarrow2^+}f\left(x\right)=f\left(x\right)\Rightarrow2b+c+4=1\Rightarrow2b+c=-3\)

Mặt khác ta có: \(f'\left(x\right)_{-\sqrt{5}\le x\le2}=\frac{-x}{\sqrt{5-x^2}}\Rightarrow\lim\limits_{x\rightarrow2^-}f'\left(x\right)=\frac{-2}{1}=-2\)

\(f'\left(x\right)_{x>2}=2x+b\Rightarrow\lim\limits_{x\rightarrow2^+}f'\left(x\right)=b+4\)

Để hàm số có đạo hàm tại \(x=2\)

\(\Rightarrow\left\{{}\begin{matrix}2b+c=-3\\b+4=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=-6\\c=9\end{matrix}\right.\)

4 tháng 4 2017

Ý kiến đúng

Giả sử ngược lại y = f(x) + g(x) liên tục tại x0. Đặt h(x) = f(x) + g(x). Ta có g(x) = h(x) – f(x).

Vì y = h(x) và y = f(x) liên tục tại x0 nên hiệu của chúng là hàm số y = g(x) phải liên tục tại x0. Điều này trái với giả thiết là y = g(x) không liên tục tại x0.

4 tháng 4 2017

a) Ta có ham-so-lien-tuc = 22 +2.2 +4 = 12.

ham-so-lien-tucnên hàm số y = g(x) gián đoạn tại x0 = 2.

b) Để hàm số y = f(x) liên tục tại x0 = 2 thì ta cần thay số 5 bởi số 12

14 tháng 4 2017

\(\lim\limits_{x\rightarrow0}\left|f\left(x\right)\right|=\lim\limits_{x\rightarrow0}\left|x^2sin\dfrac{1}{x}\right|< \lim\limits_{x\rightarrow0}\left|x^2\right|=0\).
Vậy \(\lim\limits_{x\rightarrow0}f\left(x\right)=0\).
\(f\left(0\right)=A\).
Để hàm số liên tục tại \(x=0\) thì \(\lim\limits_{x\rightarrow0}f\left(x\right)=f\left(0\right)\Leftrightarrow A=0\).
Để xét hàm số có đạo hàm tại \(x=0\) ta xét giới hạn:
\(\lim\limits_{x\rightarrow0}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0}\dfrac{x^2sin\dfrac{1}{x}}{x}=\lim\limits_{x\rightarrow0}xsin\dfrac{1}{x}=0\).
Vậy hàm số có đạo hàm tại \(x=0\).

9 tháng 4 2017

a) Giả sử ∆x là số gia của số đối tại x0= 1. Ta có:

∆y = f(1 + ∆x) - f(1) = 7 + (1 + ∆x) - (1 + ∆x)2 - (7 + 1 - 12) = -(∆x)2 - ∆x ;

= - ∆x - 1 ; = (- ∆x - 1) = -1.

Vậy f'(1) = -1.

b) Giả sử ∆x là số gia của số đối tại x0= 2. Ta có:

∆y = f(2 + ∆x) - f(2) = (2 + ∆x)3 - 2(2 + ∆x) + 1 - (23 - 2.2 + 1) = (∆x)3 + 6(∆x)2 + 10∆x;

= (∆x)2 + 6∆x + 10; = [(∆x)2 + 6∆x + 10] = 10.

Vậy f'(2) = 10.


28 tháng 5 2020

khi x \(\ne\)2 vs khi x = 2, sorry mk ghi nhầm

NV
27 tháng 4 2020

a/ \(y=3x+2\)

b/ \(y=-\frac{1}{4}x+1\)

c/ \(y=\frac{1}{6}x+\frac{3}{2}\)

d/ \(y=-32x-48\)