K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AN+CN=AC

=>AN=20-15=5cm

Xét ΔABC có AM/AB=AN/AC

nên MN//BC

b: Xét ΔAMN và ΔNPC có

góc AMN=góc NPC(=góc B)

góc ANM=góc NCP)

=>ΔAMN đồng dạng với ΔNPC

DD
8 tháng 5 2021

\(\frac{x+2}{2019}+\frac{x+3}{2018}=\frac{x+4}{2017}+\frac{x}{2021}\)

\(\Leftrightarrow\frac{x+2}{2019}+1+\frac{x+3}{2018}+1=\frac{x+4}{2017}+1+\frac{x}{2021}+1\)

\(\Leftrightarrow\frac{x+2021}{2019}+\frac{x+2021}{2018}=\frac{x+2021}{2017}+\frac{x+2021}{2021}\)

\(\Leftrightarrow x+2021=0\)

\(\Leftrightarrow x=-2021\)

13 tháng 7 2016

a) 6x^2-11x+3                              b)2x^2+3x-27                      c)3x^2-8x+4

= 6x^2-2x-9x+3                            =2x^2-6x+9x-27                    =3x^2-6x-2x+4

=2x(3x-1)-3(3x-1)                         =2x(x-3)+9(x-3)                      =3x(x-2)-2(x-2)

=(2x-3)(3x-1)                               =(2x+9)(x-3)                           =(3x-2)(x-2)      

20 tháng 3 2020

a

Áp dụng định lý Thales ta có:

\(\frac{BP}{AB}=\frac{BM}{BC};\frac{CN}{AC}=\frac{CM}{BC}\Rightarrow\frac{PB}{AB}+\frac{CN}{AC}=\frac{BM}{BC}+\frac{CM}{BC}=1\)

b

Gọi \(S_{BPM}=a^2;S_{CMN}=b^2;S_{ABC}=S^2\)

PM//AC nên \(\Delta\)BPM ~ \(\Delta\)BAC =>\(\frac{S_{BPM}}{S_{ABC}}=\frac{a^2}{S^2}=\frac{BM^2}{BC^2}\Rightarrow\frac{BM}{BC}=\frac{a}{S}\)

MN//AB nên \(\Delta\)CMN ~ \(\Delta\)CBA => \(\frac{S_{CMN}}{S_{ABC}}=\frac{b^2}{S^2}=\frac{CM^2}{BC^2}\Rightarrow\frac{CM}{BC}=\frac{b}{S}\)

\(\Rightarrow\frac{a}{S}+\frac{b}{S}=1\Rightarrow a+b=S\Rightarrow S^2=\left(a+b\right)^2\)

\(\Rightarrow S_{AMNP}=\left(a+b\right)^2-a^2-b^2=2ab\le\frac{\left(a+b\right)^2}{2}=\frac{S^2}{2}\) ( không đổi )

Vậy Max \(S_{AMNP}=\frac{S_{ABC}}{2}\) khi M là trung điểm của BC.

21 tháng 3 2020

Cảm ơn nha 

Câu 106: 

a: Xét ΔABC có 

P là trung điểm của AB

N là trung điểm của AC

Do đó: PN là đường trung bình của ΔABC

Suy ra: PN//BC

hay PN//HM; QN//HM

Xét tứ giác QNMH có QN//HM

nên QNMH là hình thang

mà \(\widehat{QHM}=90^0\)

nên QNMH là hình thang vuông

b: Ta có: ΔAHC vuông tại H

mà HN là đường trung tuyến ứng với cạnh huyền AC

nên \(HN=\dfrac{AC}{2}\left(1\right)\)

Xét ΔABC có

M là trung điểm của BC

P là trung điểm của AB

Do đó: MP là đường trung bình của ΔABC

Suy ra: MP//AC và \(MP=\dfrac{AC}{2}\left(2\right)\)

Từ (1) và (2) suy ra MP=HN

Xét tứ giác MNPH có PN//HM

nên MNPH là hình thang

mà MP=HN

nên MNPH là hình thang cân

8 tháng 9 2021

bạn đinhr thực sự hâm mộ bạn luôn á cam rơn nhìu nha mong bn sẽ luôn giúp đỡ mik :)

\(=-x^2y^3\cdot2x^{n-2}y^n+x^2y^3\cdot3x^ny^{n-3}-x^2y^3\cdot x^{n-2}y^{n-3}\)

\(=-2x^ny^{n+3}+3x^{n+2}y^n-x^ny^n\)

1: =>x^2-5x+6-x^2-5x-6=x^2+1-x^2+9

=>-10x=10

=>x=-1(nhận)

2: \(\Leftrightarrow3x^2-15x-x^2+2x-2x^2=0\)

=>-13x=0

=>x=0

3: \(\Leftrightarrow13\left(x+3\right)+x^2-9=12x+42\)

=>x^2-9+13x+39-12x-42=0

=>x^2+x-12=0

=>(x+4)(x-3)=0

=>x=3(loại) hoặc x=-4(nhận)

4: \(\Leftrightarrow-2+x^2-5x+4=x^2+x-6\)

=>-5x-2=x-6

=>-6x=-4

=>x=2/3

25 tháng 8 2021

\(3\left(x-1\right)^2-3x\left(2-5\right)=21\)

\(\Leftrightarrow3x^2-6x+3+9x-21=0\)

\(\Leftrightarrow3x^2+3x-18=0\)

\(\Leftrightarrow3\left(x^2+x-6\right)=0\)

\(\Leftrightarrow3\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

Vậy \(S=\left\{2;-3\right\}\)