Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AN+CN=AC
=>AN=20-15=5cm
Xét ΔABC có AM/AB=AN/AC
nên MN//BC
b: Xét ΔAMN và ΔNPC có
góc AMN=góc NPC(=góc B)
góc ANM=góc NCP)
=>ΔAMN đồng dạng với ΔNPC
\(\frac{x+2}{2019}+\frac{x+3}{2018}=\frac{x+4}{2017}+\frac{x}{2021}\)
\(\Leftrightarrow\frac{x+2}{2019}+1+\frac{x+3}{2018}+1=\frac{x+4}{2017}+1+\frac{x}{2021}+1\)
\(\Leftrightarrow\frac{x+2021}{2019}+\frac{x+2021}{2018}=\frac{x+2021}{2017}+\frac{x+2021}{2021}\)
\(\Leftrightarrow x+2021=0\)
\(\Leftrightarrow x=-2021\)
a
Áp dụng định lý Thales ta có:
\(\frac{BP}{AB}=\frac{BM}{BC};\frac{CN}{AC}=\frac{CM}{BC}\Rightarrow\frac{PB}{AB}+\frac{CN}{AC}=\frac{BM}{BC}+\frac{CM}{BC}=1\)
b
Gọi \(S_{BPM}=a^2;S_{CMN}=b^2;S_{ABC}=S^2\)
PM//AC nên \(\Delta\)BPM ~ \(\Delta\)BAC =>\(\frac{S_{BPM}}{S_{ABC}}=\frac{a^2}{S^2}=\frac{BM^2}{BC^2}\Rightarrow\frac{BM}{BC}=\frac{a}{S}\)
MN//AB nên \(\Delta\)CMN ~ \(\Delta\)CBA => \(\frac{S_{CMN}}{S_{ABC}}=\frac{b^2}{S^2}=\frac{CM^2}{BC^2}\Rightarrow\frac{CM}{BC}=\frac{b}{S}\)
\(\Rightarrow\frac{a}{S}+\frac{b}{S}=1\Rightarrow a+b=S\Rightarrow S^2=\left(a+b\right)^2\)
\(\Rightarrow S_{AMNP}=\left(a+b\right)^2-a^2-b^2=2ab\le\frac{\left(a+b\right)^2}{2}=\frac{S^2}{2}\) ( không đổi )
Vậy Max \(S_{AMNP}=\frac{S_{ABC}}{2}\) khi M là trung điểm của BC.
mn giúp mik vs ạ bài nào cx đc ạ cả 2 thì càng tốt mik cảm ơn vì bài hơi dài nên mon mn thông cảm :)
Câu 106:
a: Xét ΔABC có
P là trung điểm của AB
N là trung điểm của AC
Do đó: PN là đường trung bình của ΔABC
Suy ra: PN//BC
hay PN//HM; QN//HM
Xét tứ giác QNMH có QN//HM
nên QNMH là hình thang
mà \(\widehat{QHM}=90^0\)
nên QNMH là hình thang vuông
b: Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến ứng với cạnh huyền AC
nên \(HN=\dfrac{AC}{2}\left(1\right)\)
Xét ΔABC có
M là trung điểm của BC
P là trung điểm của AB
Do đó: MP là đường trung bình của ΔABC
Suy ra: MP//AC và \(MP=\dfrac{AC}{2}\left(2\right)\)
Từ (1) và (2) suy ra MP=HN
Xét tứ giác MNPH có PN//HM
nên MNPH là hình thang
mà MP=HN
nên MNPH là hình thang cân
bạn đinhr thực sự hâm mộ bạn luôn á cam rơn nhìu nha mong bn sẽ luôn giúp đỡ mik :)
\(=-x^2y^3\cdot2x^{n-2}y^n+x^2y^3\cdot3x^ny^{n-3}-x^2y^3\cdot x^{n-2}y^{n-3}\)
\(=-2x^ny^{n+3}+3x^{n+2}y^n-x^ny^n\)
1: =>x^2-5x+6-x^2-5x-6=x^2+1-x^2+9
=>-10x=10
=>x=-1(nhận)
2: \(\Leftrightarrow3x^2-15x-x^2+2x-2x^2=0\)
=>-13x=0
=>x=0
3: \(\Leftrightarrow13\left(x+3\right)+x^2-9=12x+42\)
=>x^2-9+13x+39-12x-42=0
=>x^2+x-12=0
=>(x+4)(x-3)=0
=>x=3(loại) hoặc x=-4(nhận)
4: \(\Leftrightarrow-2+x^2-5x+4=x^2+x-6\)
=>-5x-2=x-6
=>-6x=-4
=>x=2/3
\(3\left(x-1\right)^2-3x\left(2-5\right)=21\)
\(\Leftrightarrow3x^2-6x+3+9x-21=0\)
\(\Leftrightarrow3x^2+3x-18=0\)
\(\Leftrightarrow3\left(x^2+x-6\right)=0\)
\(\Leftrightarrow3\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Vậy \(S=\left\{2;-3\right\}\)