Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ud Uc Um 120V 120V 45 45
Từ giản đồ véc tơ ta có: \(U_C=\sqrt{120^2+120^2}=120\sqrt{2}V\)
Cường độ dòng điện của mạch \(I=\frac{U_C}{Z_C}=\frac{120\sqrt{2}}{200}=0,6\sqrt{2}A\)
Công suất tiêu thụ cuộn dây: \(P=U.I\cos\varphi=120.0,6\sqrt{2}\cos45^0=72W\)
Bài 1:
Để công suát tiêu thụ trê mạch cực đại thì:
\((R+r)^2=(R_1+r)(R_1+r)\)
\(\Rightarrow (R+10)^2=(15+10)(39+10)\)
\(\Rightarrow R=25\Omega\)
Bài 2: Có hình vẽ không bạn? Vôn kế đo hiệu điện thế của gì vậy?
\(U_{RC}=const=U\) khi \(Z_{L1}=2Z_C=R\)
Mặt khác L thay đổi để : \(U_{Lmax}:U_{Lmax}=\frac{U\sqrt{R^2+Z^2_C}}{R}=\frac{U\sqrt{2^2+1}}{2}=\frac{U\sqrt{5}}{2}\)
\(\Rightarrow chọn.D\)
+,có C=C1=>U_R=\frac{U.R}{\sqrt{R^2+(Zl-ZC1)^2}}
+,U R ko đổi =>Zl=ZC1
+,có c=C1/2=>ZC=2ZC1
=>U(AN)=U(RL)=\frac{U\sqrt{r^2+Z^2l}}{\sqrt{R^2+(Zl-2Z^2C1)}}=u=200V
Ta áp dụng kết quả sau:
Mạch RLC có R thay đổi, khi R = R1 hoặc R = R2 thì công suất của mạch như nhau là P, khi đó:
\(\begin{cases}R_1+R_2=\frac{U^2}{P}\\R_1R_2=\left(Z_L-Z_C\right)^2\end{cases}\)
\(\Rightarrow R_1R_2=Z_C^2=100^2\)(1)
Điện áp hiệu dụng giữa hai đầu tụ điện: \(U_C=IZ_C=\frac{U.Z_C}{\sqrt{R^2+Z_C^2}}\)
\(U_{C1}=2U_{C2}\)
\(\Rightarrow\frac{U.Z_C}{\sqrt{R_1^2+Z_C^2}}=\frac{2U.Z_C}{\sqrt{R^2_2+Z_C^2}}\)
\(\Rightarrow2\sqrt{R_1^2+Z_C^2}=\sqrt{R_2^2+Z_C^2}\)
\(\Rightarrow4\left(R_1^2+100^2\right)=\left(R_2^2+100^2\right)\)
\(\Rightarrow4R_1^2-R_2^2=-3.100^2\)
Rút R2 ở (1) thế vào pt trên ta đc:
\(4R_1^2-\frac{100^4}{R_1^2}=-3.100^2\)
\(\Rightarrow4R_1^4+3.100^2.R_1^2-100^4=0\)
\(\Rightarrow R_1=50\Omega\)
\(\Rightarrow R_2=20\Omega\)
Do tỉ lệ trong bài như vậy, nên ta có thể dễ dàng chọn một bộ số sau thỏa mãn:
Uc2 = 1, Uc1 = 2
UR1 = 1, UR2 = 2
Khi đó điện áp của mạch \(U=\sqrt{5}\)
Vậy hệ số công suất:
\(\cos\varphi_1=\frac{U_{R1}}{U}=\frac{1}{\sqrt{5}}\)
\(\cos\varphi_2=\frac{U_{R2}}{U}=\frac{2}{\sqrt{5}}\)
Bài này mình làm rồi, đáp án như của mình mới đúng. Bạn xem lại đi nhé.
Dựa vào giản đồ xét tam giác vuông OAB có
\(\sin60=\frac{Uc}{U_{ }AB}\Rightarrow U_C=100.\sin60=50\sqrt{3}V\Rightarrow Z_C=\frac{U_C}{I}=\frac{50\sqrt{3}}{0.5}=100\sqrt{3}\Omega\)
=> \(C=\frac{1}{Z_C.\omega}\)
\(\cos60=\frac{U_R}{U_{AB}}\Rightarrow U_R=50\Omega\Rightarrow R=\frac{U_R}{I}=100\Omega\)
2. Công suất trên mạch có biểu thức
\(P=I^2R=\frac{U^2}{R^2+\left(Z_L-Z_C\right)^2}.R\\=\frac{U^2}{R^{ }+\frac{\left(Z_L-Z_C\right)^2}{R}}\)
L thay đổi để P max <=> Mẫu Min => áp dụng bất đẳng thức cô-si cho hai số không âm=> \(R=\left|Z_L-Z_C\right|\)
=> \(R=100-40=60\Omega\)
=>
Chọn B
Khi ZC = ZCO = 2ZL thì PZC0 = P0
Khi ZC < 2ZL thì luôn có 2 giá trị của ZC để công suất tiêu thụ của mạch bằng nhau.
Khi ZC > 2ZL thì chỉ có 1 giá trị công suất