Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay đổi L để công suất đạt giá trị lớn nhất \(\Rightarrow Z_L=Z_C=30\Omega\)
\(u_{RC}\) vuông pha với \(u_d\) \(\Rightarrow \tan\varphi_{RC}.\tan\varphi_d=-1\)
\(\Rightarrow \dfrac{-Z_C}{R}.\dfrac{Z_L}{r}=-1\)
\(\Rightarrow \dfrac{-30}{60}.\dfrac{30}{r}=-1\)
\(\Rightarrow r= 15\Omega\)
Công suất: \(P=\dfrac{U^2}{R+r}=\dfrac{180^2}{60+15}=432W\)
Chọn A
\(U_{RC}=const=U\) khi \(Z_{L1}=2Z_C=R\)
Mặt khác L thay đổi để : \(U_{Lmax}:U_{Lmax}=\frac{U\sqrt{R^2+Z^2_C}}{R}=\frac{U\sqrt{2^2+1}}{2}=\frac{U\sqrt{5}}{2}\)
\(\Rightarrow chọn.D\)
+,có C=C1=>U_R=\frac{U.R}{\sqrt{R^2+(Zl-ZC1)^2}}
+,U R ko đổi =>Zl=ZC1
+,có c=C1/2=>ZC=2ZC1
=>U(AN)=U(RL)=\frac{U\sqrt{r^2+Z^2l}}{\sqrt{R^2+(Zl-2Z^2C1)}}=u=200V
Dựa vào giản đồ xét tam giác vuông OAB có
\(\sin60=\frac{Uc}{U_{ }AB}\Rightarrow U_C=100.\sin60=50\sqrt{3}V\Rightarrow Z_C=\frac{U_C}{I}=\frac{50\sqrt{3}}{0.5}=100\sqrt{3}\Omega\)
=> \(C=\frac{1}{Z_C.\omega}\)
\(\cos60=\frac{U_R}{U_{AB}}\Rightarrow U_R=50\Omega\Rightarrow R=\frac{U_R}{I}=100\Omega\)
2. Công suất trên mạch có biểu thức
\(P=I^2R=\frac{U^2}{R^2+\left(Z_L-Z_C\right)^2}.R\\=\frac{U^2}{R^{ }+\frac{\left(Z_L-Z_C\right)^2}{R}}\)
L thay đổi để P max <=> Mẫu Min => áp dụng bất đẳng thức cô-si cho hai số không âm=> \(R=\left|Z_L-Z_C\right|\)
=> \(R=100-40=60\Omega\)
=>
Khi tăng điện dung nên 2,5 lần thì dung kháng giảm 2,5 lần. Cường độ dòng trễ pha hơn hiệu điện thế \(\pi\text{/}4\) nên
\(Z_L-\frac{Z_C}{2,5}=R\)
Trường hợp đầu tiên thì thay đổi C để hiệu điện thế trên C cực đại thì
\(Z_LZ_C=R^2+Z^2_L\)
\(Z_LZ_C=\left(Z_L-\frac{Z_C}{2,5}\right)^2+Z^2_L\)
Giải phương trình bậc 2 ta được
\(Z_C=\frac{5}{4}Z_L\) hoặc \(Z_C=10Z_L\) (loại vì Zl-Zc/2.5=R<0)
\(R=\frac{Z_L}{2}\)
Vẽ giản đồ vecto ta được \(U\) vuông góc với \(U_{RL}\) còn \(U_C\) ứng với cạch huyền
Góc hợp bởi U và I bằng với góc hợp bởi \(U_L\) và \(U_{LR}\)
\(\tan\alpha=\frac{R}{Z_L}=0,5\)
\(\sin\alpha=1\text{/}\sqrt{5}\)
\(U=U_C\sin\alpha=100V\)
\(U_o=U\sqrt{2}=100\sqrt{2}V\)
chọn C
R thay đổi để công suất của mạch cực đại \(\Rightarrow R = |Z_L-Z_C|\)
Hệ số công suất \(\cos\varphi=\dfrac{R}{Z}=\dfrac{R}{\sqrt{R^2+(Z_L-Z_C)^2}}=\dfrac{R}{\sqrt{R^2+R^2}}=\dfrac{1}{\sqrt 2}\)
\(\Rightarrow \varphi=\dfrac{\pi}{4}\)
Khi mắc vào hiệu điện thế một chiều:
\(r=\frac{10}{0,4}=25\Omega\)
Khi mắc vào hiệu điện thế xoay chiều:
\(Z_{cd}=\sqrt{r^2+Z^2_L}=\frac{100}{1}=100\Omega\Rightarrow Z_L=25\sqrt{15}\Omega\)
\(Z_L=\omega L\Rightarrow L=\frac{Z_L}{\omega}=\frac{25\sqrt{15}}{100\pi}=\frac{\sqrt{15}}{4\pi}\left(H\right)\)
Đáp án C