K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

\(\left(\frac{x}{y}-1\right).\left(\frac{y}{z}+1\right).\left(\frac{z}{x}-1\right)\)=\(\left(\frac{x-y}{y}\right).\left(\frac{y+z}{z}\right).\left(\frac{z-x}{x}\right)\)

ta có:x-y-z=0

     \(\rightarrow\)x-y=z

     \(\rightarrow\)y+z=x

     \(\rightarrow\)z-x=-y

thay các số trên vào bt,ta đc:

\(\frac{z}{y}.\frac{x}{z}.\frac{-y}{x}\)= -1

25 tháng 6 2020

Ta có: \(x-y-z=0\Rightarrow x-z=y,z-y=x,y-x=-z\)

\(B=\left(1-\frac{z}{x}\right)\cdot\left(1-\frac{x}{y}\right)\cdot\left(1-\frac{y}{z}\right)\)

\(\Rightarrow B=\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{z-y}{z}=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=\frac{-xyz}{xyz}=-1\)

25 tháng 6 2020

x - y - z = 0

=> x = y + z

y = x - z

-z = x - y

Thay vào B ta được :

\(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1-\frac{y}{z}\right)\)

\(=\left(1-\frac{x-y}{x}\right)\left(1-\frac{y+z}{y}\right)\left(1-\frac{x-z}{z}\right)\)

\(=\left(\frac{-y}{x}\right)\left(\frac{z}{y}\right)\left(\frac{-x}{z}\right)\)

\(=\frac{-yz\left(-x\right)}{xyz}\)

\(=\frac{xyz}{xyz}=1\)

Mình k dám chắc nhá 

8 tháng 1 2018

Ta có :

x - y - z = 0 nên x - z = y ; y - x = -z ; z + y = x

Suy ra : B = \(\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right).\left(1+\frac{y}{z}\right)=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)

\(\Rightarrow B=\frac{y}{z}.\frac{-z}{y}.\frac{x}{z}=-1\)

8 tháng 11 2019

Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và tất cả các bạn khác vào giúp mình với ạ !!!

14 tháng 5 2017

Ta có :

x - y - z = 0

\(\Rightarrow\hept{\begin{cases}x=y+z\\y=x-z\\-z=y-x\end{cases}}\)

\(M=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)

\(M=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)

Thay các x , y, z vào đẳng thức M , ta sẽ có :

\(M=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}=-\frac{z}{z}=-1\)

=> Với x - y - z = 0 (\(\forall x,y,z\ne0\)) thì M = -1

28 tháng 9 2017

Áp dụng tính chất tỉ lệ thức, ta có:

\(\frac{y+z-x}{x}+\frac{z+x-y}{y}+\frac{x+y-z}{2}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow y+z-x=x;z+x-y=y;x+y-z=z\)

Do đó ta có:

\(1+\frac{x}{y}=\frac{z+x-y}{y}+\frac{y+z-x}{y}=\frac{2z}{y}\)

Tương tự ta có:

\(1+\frac{y}{z}=\frac{2x}{z}\)và \(1+\frac{z}{x}=\frac{2y}{x}\)

Do đó biểu thức sẽ bằng:

\(\frac{2x}{z}.\frac{2y}{x}.\frac{2z}{y}=\frac{8xyz}{xyz}=8\)

28 tháng 9 2017

Áp dụng tính chất tỉ lệ thức có:

(y+z-x)/x + (z+x-y)/y + (x+y-z)/z= (y+z-x+z+x-y+x+y-z)/(x+y+z)= (x+y+z)/(x+y+z)=1

=>y+z-x=x ; z+x-y=y và x+y-z=z

Do đó ta có:

(1 + x/y)= [(z+x-y)/y + (y+z-x)/y] =2z/y

Tương tự có:

1 + y/z=2x/z và 1 + z/x =2y/x

Do đó biểu thức sẽ bằng :

2x/z . 2y/x . 2z/y = 8xyz/xyz =8

20 tháng 8 2020

Ez

ta có \(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{x}{z}\right)\)

\(\Leftrightarrow A=\left(\frac{y}{y}+\frac{x}{y}\right)\left(\frac{z}{z}+\frac{y}{z}\right)\left(\frac{x}{x}+\frac{z}{x}\right)\)

\(\Leftrightarrow A=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\left(1\right)\)

theo giả thiết \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Leftrightarrow\frac{y+z}{x}-\frac{x}{x}=\frac{z+x}{y}-\frac{y}{y}=\frac{x+y}{z}-\frac{z}{z}\)

\(\Leftrightarrow\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)

\(\Leftrightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)

theo tính chất dãy tỉ số bằng nhau

\(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{2x+2y+2z}{x+y+z}=\frac{2\left(x+y+z\right)}{\left(x+y+z\right)}=2\)

\(\left\{{}\begin{matrix}\frac{y+z}{x}=2\Leftrightarrow y+z=2x\left(2\right)\\\frac{z+x}{y}=2\Leftrightarrow z+x=2y\left(3\right)\\\frac{x+y}{z}=2\Leftrightarrow x+y=2z\left(4\right)\end{matrix}\right.\)

thay (2); (3); (4) vào (1)

\(\Leftrightarrow A=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{2z.2x.2y}{xyz}=\frac{2^3\left(xyz\right)}{\left(xyz\right)}=2^3=8\)