K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

Chọn khẳng định đúng trong các khẳng định sau :

(A) −2,83>2,83−2,83>2,83 (B) −2,83≥2,83−2,83≥2,83

(C) −2,83=2,83−2,83=2,83 (D) −2,83≤2,83

18 tháng 3 2018

c

4 tháng 5 2017

Ta có:a-7>b-7\(\Rightarrow\)a>b

Vì a>b\(\Rightarrow\)a+7>b+7

Vậy khẳng định(C) là đúng

22 tháng 4 2017

Với ∆ABC thì các khẳng định

a) ^A+^B+^C>1800A^+B^+C^>1800 là sai

b) ^A+^B<1800A^+B^<1800 là đúng

c)^B+^C<1800B^+C^<1800 là đúng

d) ^A+^B1800A^+B^≥1800 là sai

3 tháng 8 2022

b đúng
a, c, d sai

4 tháng 5 2018

B

12 tháng 12 2019

Chọn B

26 tháng 3 2018

Ta có: VT = (-2) + 3 = 1

VP = 2

=> VT < VP nên khẳng định (-2) + 3 ≥ 2 là sai.

b) Ta có: VT = -6

VP = 2.(-3) = -6

=> VT = VP nên khẳng định -6 ≤ 2.(-3) là đúng.

c) Ta có: VT = 4 + (-8) = -4

VP = 15 + (-8) = 7

=> VP > VT nên khẳng định 4 + (-8) < 15 + (-8) là đúng.

d)\(x^2\) ≥ 0 với mọi x ∈ R

=> \(x^2\) + 1 ≥ 0 + 1

=> \(x^2\) + 1 ≥ 1

Vậy khẳng định \(x^2\)+ 1 ≥ 1 là đúng.

22 tháng 4 2017

(Kí hiệu: VP = vế phải; VT = vế trái)

a) Ta có: VT = (-2) + 3 = 1

VP = 2

=> VT < VP nên khẳng định (-2) + 3 \(\ge\) 2 là sai.

b) Ta có: VT = -6

VP = 2.(-3) = -6

=> VT = VP nên khẳng định -6 \(\le\) 2.(-3) là đúng.

c) Ta có: VT = 4 + (-8) = -4

VP = 15 + (-8) = 7

=> VP > VT nên khẳng định 4 + (-8) < 15 + (-8) là đúng.

d) Vì x2 \(\ge\)0 với mọi x ∈ R

=> x2 + 1 \(\ge\) 0 + 1

=> x2 + 1 \(\ge\) 1

Vậy khẳng định x2 + 1 \(\ge\) 1 là đúng.

Chọn A

22 tháng 4 2017

a) (-6).5 < (-5).5

Vì -6 < -5 và 5 > 0

=> (-6).5 < (-5).5

Vậy khẳng định (-6).5 < (-5).5 là đúng

b) -6 < -5 và -3 < 0

=> (-6).(-3) > (-5).(-3)

Vậy khẳng định (-6).(-3) < (-5).(-3) là sai.

c) -2003 ≤ 2004 và -2005 < 0

=> (-2003).(-2005) ≥ (-2005).2004

Vậy khẳng định (-2003).(-2005) ≤ (-2005).2004 là sai.

d) x2 ≥ 0 và -3 < 0

=> -3x2 ≤ 0

Vậy khẳng định -3x2 ≤ 0 là đúng


1 tháng 5 2017

a) Thay x=-1 vào 2 vế của phương trình trên , ta được :

\(VT=\left(-1\right)^3+3.\left(-1\right)=-4\left(1\right)\)

\(VP=2.\left(-1\right)^2-3.\left(-1\right)+1=6\left(2\right)\)

Từ (1) và (2) \(\Rightarrow VT\ne VP\)

* Vậy x = -1 không phải là nghiệm của phương trình trên .

b) Thay z=3 vào 2 vế của phương trình trên , ta được :

\(VT=\left(3-2\right)\left(3^2+1\right)=10\left(1\right)\)

\(VP=2.3+5=11\left(2\right)\)

Từ (1) và (2) \(\Rightarrow VT\ne VP\)

* Vậy z=3 không phải là nghiệm của phương trình trên .