Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (-6).5 < (-5).5
Vì -6 < -5 và 5 > 0
=> (-6).5 < (-5).5
Vậy khẳng định (-6).5 < (-5).5 là đúng
b) -6 < -5 và -3 < 0
=> (-6).(-3) > (-5).(-3)
Vậy khẳng định (-6).(-3) < (-5).(-3) là sai.
c) -2003 ≤ 2004 và -2005 < 0
=> (-2003).(-2005) ≥ (-2005).2004
Vậy khẳng định (-2003).(-2005) ≤ (-2005).2004 là sai.
d) x2 ≥ 0 và -3 < 0
=> -3x2 ≤ 0
Vậy khẳng định -3x2 ≤ 0 là đúng
a) Đúng
b)Đúng
c)Sai vì nghiệm không thỏa mãn ĐKXĐ
d)Sai vì có 1 nghiệm không thỏa mãn ĐKXĐ
a)
\((x+2)(x+4)(x+6)(x+8)+16\)
\(=[(x+2)(x+8)][(x+4)(x+6)]+16\)
\(=(x^2+10x+16)(x^2+10x+24)+16\)
\(=a(a+8)+16\) (Đặt \(x^2+10x+16=a\) )
\(=a^2+2.4.a+4^2=(a+4)^2\)
\(=(x^2+10x+16+4)^2\)
\(=(x^2+10x+20)^2\)
b) \((x^2+x)(x^2+x+1)-6\)
\(=(x^2+x)^2+(x^2+x)-6\)
\(=(x^2+x)^2-2(x^2+x)+3(x^2+x)-6\)
\(=(x^2+x)(x^2+x-2)+3(x^2+x-2)\)
\(=(x^2+x-2)(x^2+x+3)\)
\(=(x^2-x+2x-2)(x^2+x+3)\)
\(=[x(x-1)+2(x-1)](x^2+x+3)\)
\(=(x-1)(x+2)(x^2+x+3)\)
c)
\((x^2-4x)^2-8(x^2-4x)+15\)
\(=(x^2-4x)^2-3(x^2-4x)-5(x^2-4x)+15\)
\(=(x^2-4x)(x^2-4x-3)-5(x^2-4x-3)\)
\(=(x^2-4x-3)(x^2-4x-5)\)
\(=(x^2-4x-3)(x^2+x-5x-5)\)
\(=(x^2-4x-3)[x(x+1)-5(x+1)]=(x^2-4x-3)(x+1)(x-5)\)
Ta có: 2(x - 8)^3 = 2x^3 - 48x^2 + 384x - 1024
2(8 - x)(8 - x)^2 = 2x^3 - 48x^2 + 384x - 1024
=> \(\frac{\left(x-8\right)^3}{2\left(8-x\right)}=\frac{\left(8-x\right)^2}{2}\) (đúng) =))
b)(x2+x+1)(x2+x+2)-12
Đặt t=x2+x+1
t(t+1)-12=t2+t-12
=(t-3)(t+4)=(x2+x+1-3)(x2+x+1+4)
=(x2+x-2)(x2+x+5)
=(x-1)(x+2)(x2+x+5)
c)(x2+8x+7)(x2+8x+15)+15
Đặt t=x2+8x+7
t(t+8)+15=t2+8t+15
=(t+3)(t+5)
=(x2+8x+7+3)(x2+8x+7+15)
=(x2+8x+10)(x2+8x+22)
d)(x+2)(x+3)(x+4)(x+5)-24
=(x2+7x+10)(x2+7x+12)-24
Đặt t=x2+7x+10
t(t+2)-24=(t-4)(t+6)
=(x2+7x+10-4)(x2+7x+10+6)
=(x2+7x+6)(x2+7x+16)
=(x+1)(x+6)(x2+7x+16)
a/ Đặt x2 + 4x + 8 = a
Thì đa thức ban đầu thành
a2 + 3ax + 2x2 = (a2 + 2ax + x2) + (ax + x2)
= (a + x)2 + x(a + x) = (a + x)(a + 2x)
Ta có: VT = (-2) + 3 = 1
VP = 2
=> VT < VP nên khẳng định (-2) + 3 ≥ 2 là sai.
b) Ta có: VT = -6
VP = 2.(-3) = -6
=> VT = VP nên khẳng định -6 ≤ 2.(-3) là đúng.
c) Ta có: VT = 4 + (-8) = -4
VP = 15 + (-8) = 7
=> VP > VT nên khẳng định 4 + (-8) < 15 + (-8) là đúng.
d) Vì \(x^2\) ≥ 0 với mọi x ∈ R
=> \(x^2\) + 1 ≥ 0 + 1
=> \(x^2\) + 1 ≥ 1
Vậy khẳng định \(x^2\)+ 1 ≥ 1 là đúng.
(Kí hiệu: VP = vế phải; VT = vế trái)
a) Ta có: VT = (-2) + 3 = 1
VP = 2
=> VT < VP nên khẳng định (-2) + 3 \(\ge\) 2 là sai.
b) Ta có: VT = -6
VP = 2.(-3) = -6
=> VT = VP nên khẳng định -6 \(\le\) 2.(-3) là đúng.
c) Ta có: VT = 4 + (-8) = -4
VP = 15 + (-8) = 7
=> VP > VT nên khẳng định 4 + (-8) < 15 + (-8) là đúng.
d) Vì x2 \(\ge\)0 với mọi x ∈ R
=> x2 + 1 \(\ge\) 0 + 1
=> x2 + 1 \(\ge\) 1
Vậy khẳng định x2 + 1 \(\ge\) 1 là đúng.