K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2021

Đề bài yêu cầu gì?

13 tháng 10 2021

gì vậy

1 tháng 5 2019

2.    2/4 : 3/4 x 6/2 x 2/4 = 2/3 x 6/4 = 2/3 x 3/2 = 1

21 tháng 9 2024

\(\infty\)

18 tháng 8 2020

\(\frac{1}{1.2}+\frac{2}{2.4}+\frac{3}{4.5}+.........+\frac{n}{\left(T_{n-1}+1\right)\left(T_{n-1}+1+n\right)}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+......+\frac{1}{T_{n-1}+1}-\frac{1}{T_{n-1}+1+n}\)

\(1-\frac{1}{T_{n-1}+1+n}=\frac{T_{n-1}+1+n-1}{T_{n-1}+1+n}=\frac{T_{n-1}+n}{T_{n-1}+1+n}\)

Chú ý : Ai không thách thức cấp độ 1 ( vùng không tô đậm ) hoặc cấp độ 2 ( vùng tô đậm ) thì không được nhận k.

AI thách thức cấp độ 1 thì chỉ khi giải chính xác mới được nhận k.

Còn ai thách thức cấp độ 2 thì chỉ khi giải chính xác mới được nhận k và được công nhận là GOD luôn !

HQ
Hà Quang Minh
Giáo viên
28 tháng 1 2024

Ta có công thức tổng quát: 

\(\dfrac{k}{n\cdot\left(n+k\right)}=\dfrac{1}{n}-\dfrac{1}{n+k}\)

\(a,A=\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{x\left(x+3\right)}\\ =\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{x\left(x+3\right)}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\dfrac{x-2}{5\left(x+3\right)}\\ =\dfrac{x-2}{15\left(x+3\right)}\)

Theo đề bài ta có: 

\(A=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{15\left(x+3\right)}=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{303}{308}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{305-2}{305+3}\\ \Rightarrow x=305\)

28 tháng 1 2024

khó nhỉ

13 tháng 5 2023

=13/12x14/13x15/14x16/15x...x2006/2005x2007/2006x2008/2007

=2008/12

=502/3

13 tháng 5 2023

A = 1\(\dfrac{1}{12}\) \(\times\) 1\(\dfrac{1}{13}\) \(\times\) 1\(\dfrac{1}{14}\) \(\times\) 1\(\dfrac{1}{15}\) \(\times\) ... \(\times\) 1\(\dfrac{1}{2005}\) \(\times\) 1\(\dfrac{1}{2006}\) \(\times\) 1\(\dfrac{1}{2007}\)

A = ( 1 + \(\dfrac{1}{12}\)\(\times\) ( 1 + \(\dfrac{1}{13}\)\(\times\) ( 1 + \(\dfrac{1}{14}\)\(\times\)...\(\times\) ( 1 + \(\dfrac{1}{2006}\))\(\times\)(1+\(\dfrac{1}{2007}\))

A = \(\dfrac{13}{12}\) \(\times\) \(\dfrac{14}{13}\) \(\times\) \(\dfrac{15}{14}\) \(\times\) ...\(\times\) \(\dfrac{2007}{2006}\) \(\times\) \(\dfrac{2008}{2007}\)

A = \(\dfrac{13\times14\times15\times...\times2007}{13\times14\times15\times...\times2007}\) \(\times\) \(\dfrac{2008}{12}\)

A = 1 \(\times\) \(\dfrac{502}{3}\)

A = \(\dfrac{502}{3}\)

13 tháng 1 2024

a; (5142 - 17 x 8 + 242 : 11) x (27 -  3 x 9)

   = (5142 -  17 x 8 + 242 : 11) x (27 - 27)

 =  (5142 - 17 x 8 + 242 : 11) x 0

   = 0

 

13 tháng 1 2024

b; 

  (1 + \(\dfrac{1}{2}\)\(\times\) (1 + \(\dfrac{1}{3}\)\(\times\) ( 1 + \(\dfrac{1}{4}\)\(\times\) ... \(\times\) (1 + \(\dfrac{1}{2010}\)\(\times\)(1 + \(\dfrac{1}{2011}\))

\(\dfrac{2+1}{2}\) \(\times\) \(\dfrac{3+1}{3}\) \(\times\) \(\dfrac{4+1}{4}\)\(\times\) ... \(\times\) \(\dfrac{2010+1}{2010}\)\(\times\) \(\dfrac{2011+1}{2011}\)

\(\dfrac{3}{2}\)\(\times\)\(\dfrac{4}{3}\)\(\times\)\(\dfrac{5}{4}\)\(\times\)...\(\times\)\(\dfrac{2011}{2010}\)\(\times\)\(\dfrac{2012}{2011}\)

\(\dfrac{2012}{2}\)

= 1006

29 tháng 4 2023

 \(\dfrac{13+x}{20}\) = \(\dfrac{3}{4}\)

    13 + \(x\)  = 20 \(\times\) \(\dfrac{3}{4}\)

     13 + \(x\) = 15 

              \(x\) = 15 - 13

                \(x\) = 2

29 tháng 4 2023

Cách khác :

\(\dfrac{13+x}{20}=\dfrac{3}{4}\)

\(\dfrac{13+x}{20}=\dfrac{15}{20}\)

\(13+x=15\)

\(x=15-13\)

\(x=2\)

8 tháng 8 2017

\(71+52,5\times4=\frac{x+140}{x}+210\)

\(71+210=\frac{x+140}{x}+210\)

\(=>\frac{x+140}{x}=71\)

\(71=\frac{142}{2}\)\(\Rightarrow x=142-140=2\)