Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy \(pt\left(1\right)-3.pt\left(2\right)\)được
\(11y^2+11y=22\)
\(\Leftrightarrow y^2+y-2=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)
Thế vô 1 trong 2 pt đầu sẽ tìm đc x
\(\hept{\begin{cases}2x-5y=11\\3x+4x=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3.\left(2x-5y\right)=3.11\\2.\left(3x+4y\right)=2.5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}6x-15y=33\\6x+8y=10\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}6x-15y-\left(6x+8y\right)=33-10\\3x+4y=5\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}-23y=23\\3x+4y=5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y=-1\\3x-4=5\end{cases}\Leftrightarrow\hept{\begin{cases}y=-1\\x=3\end{cases}}}\)
Vậy....
Có 2 phương pháp giải hệ phương trình:
1.Phương pháp thế
2.Phương pháp cộng đại số
Ở Hệ phương trình này làm theo phương pháp thế nó khá là phức tạp nên ta dùng phương pháp cộng đại số.
a) \(\hept{\begin{cases}x+3y=4\left(1\right)\\2x+5y=7\left(2\right)\end{cases}}\)
Nhân cả hai vế ở phương trình (1) với 2 ta được \(2x+6y=8\)(3)
Lấy (3) - (2) ta được \(y=1\)
Từ đó suy ra x = 4 - 3 . 1 = 4 - 3 = 1
Vậy x = y = 1
\(\hept{\begin{cases}x^3+y^3=9\\x^2+2y^2=x+4y\end{cases}\Leftrightarrow}\hept{\begin{cases}x^3+y^3=9\\3x^2+6y^2=3x+12y\end{cases}}\)
Trừ 2 vế của pt cho nhau ta được
\(x^3-3x^2+y^3-6x^2=9-3x-12y\)
\(\Leftrightarrow\left(x-1\right)^3=\left(2-y\right)^3\)
\(\Leftrightarrow x-1=2-y\)
\(\Leftrightarrow x=3-y\)
Thế vào một trong 2 pt ban đầu sẽ tìm đc x ; y
\(\hept{\begin{cases}3x^3+5y^3-2xy=6\\2x^3+3y^3+3xy=8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y^3=13xy-12\\x^3=22-21xy\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^3y^3+\left(13xy-12\right)\left(21xy-22\right)=0\\x^3=22-21xy\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^3=22-21xy\\x^3y^3+273x^2y^2-538xy+264=0\left(1\right)\end{cases}}\)
Giải (1) : \(x^3y^3+273x^2y^2-538xy+264=0\)
Pt này có 1 nghiệm là 1 , 2 nghiệm còn lại xấu quá :( \(-137\pm\sqrt{19033}\) nên mk ko làm nx , đại khái hướng làm là như vậy
Tìm đc xy rồi thay vào x3 = 22 - 21xy sẽ tìm đc x -> y
a) \(\hept{\begin{cases}x+y=2\\3x+3y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x+3y=6\\3x+3y=2\end{cases}}\)
Dễ thấy điều trên là vô lí nên hệ phương trình không có nghiệm
20. Giải các hệ phương trình sau bằng phương pháp cộng đại số.
a) {3x+y=32x−y=7{3x+y=32x−y=7; b) {2x+5y=82x−3y=0{2x+5y=82x−3y=0; c) {4x+3y=62x+y=4{4x+3y=62x+y=4;
d) {2x+3y=−23x−2y=−3{2x+3y=−23x−2y=−3; e) {0,3x+0,5y=31,5x−2y=1,5{0,3x+0,5y=31,5x−2y=1,5
Bài giải:
a) {3x+y=32x−y=7{3x+y=32x−y=7 ⇔⇔ {5x=102x−y=7{5x=102x−y=7⇔⇔ {x=2y=2x−7{x=2y=2x−7⇔⇔ {x=2y=−3{x=2y=−3
b) {2x+5y=82x−3y=0{2x+5y=82x−3y=0 ⇔⇔ {2x+5y=88y=8{2x+5y=88y=8⇔⇔ {2x+5y=8y=1{2x+5y=8y=1⇔⇔ {x=32y=1{x=32y=1
c) {4x+3y=62x+y=4{4x+3y=62x+y=4 ⇔⇔ {4x+3y=64x+2y=8{4x+3y=64x+2y=8 ⇔⇔ {4x+3y=6y=−2{4x+3y=6y=−2⇔⇔ {x=3y=−2{x=3y=−2
d) {2x+3y=−23x−2y=−3{2x+3y=−23x−2y=−3 ⇔⇔{6x−9y=−66x−4y=−6{6x−9y=−66x−4y=−6⇔⇔ {6x−9y=−6−5y=0{6x−9y=−6−5y=0⇔⇔ {x=−1y=0{x=−1y=0
e) {0,3x+0,5y=31,5x−2y=1,5{0,3x+0,5y=31,5x−2y=1,5 ⇔⇔ {1,5x+2,5y=151,5x−2y=1,5{1,5x+2,5y=151,5x−2y=1,5⇔⇔ {1,5x+2,5y=154,5y=13,5{1,5x+2,5y=154,5y=13,5 ⇔⇔ {1,5x=15−2,5.3y=3{1,5x=15−2,5.3y=3 ⇔⇔ {1,5x=7,5y=3{1,5x=7,5y=3
⇔⇔
Xem thêm tại: http://loigiaihay.com/bai-20-trang-19-sgk-toan-9-tap-2-c44a5497.html#ixzz4rEN0z2XD
\(\hept{\begin{cases}3x+5y=20\left(1\right)\\3x+4y=-18\left(2\right)\end{cases}}\)
Lấy (1) - (2) theo vế :
<=> y = 38
Thế y = 2 vào (1)
<=> 3x + 5.38 = 20
<=> 3x + 190 = 20
<=> 3x = -170
<=> x = -170/3
Vậy hpt có nghiệm duy nhất \(\hept{\begin{cases}x=-\frac{170}{3}\\y=38\end{cases}}\)