K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

Hệ đã cho  ⇔ x y 2 + 6 x − y 2 − 6 = y x 2 + y y x 2 + 6 y − x 2 − 6 = x y 2 + x

Trừ vế theo vế hai phương trình của hệ ta được:

2xy(y – x) +7 (x – y) + (x – y) (x + y) = 0

⇔ (x – y)(x + y – 2xy + 7) = 0 x = y x + y − 2 x y + 7 = 0

+ Nếu x = y thay vào hệ ta có: x 2 – 5 x + 6 = 0 ⇔ x = y = 2 x = y = 3

+ Nếu x + y – 2xy + 7 = 0 ⇔ 2x + 2y – 4xy + 14 = 0

⇔ (2x – 1) + 2y (1 – 2x) = −15(1 – 2x) (1 – 2y) = 15

Mặt khác khi cộng hai phương trình của hệ đã cho ta được:

x 2 + y 2 – 5 x – 5 y + 12 = 0 ⇔ 4 x 2 – 20 x + 25 + 4 y 2 – 20 y + 25 – 2 = 0

⇔ ( 2 x – 5 ) 2 + ( 2 y – 5 ) 2 = 2 ⇔ ( 2 x – 5 ) 2 + ( 2 y – 5 ) 2 = 2

Đặt a = 2x – 5; b = 2y – 5

Ta có  a 2 + b 2 = 2 a + 4 b + 4 = 14

⇔ a + b 2 − 2 a b = 2 a b + 4 a + b = − 1 ⇔ a + b = 0 a b = − 1 a + b = − 8 a b = 31

Trường hợp 1: a + b = 0 a b = − 1 ⇔ (x; y) = (3; 2), (2; 3)

Trường hợp 2: a + b = − 8 a b = 31 vô nghiệm

Vậy nghiệm của hệ đã cho là (x; y)  {(2; 2); (3; 3); (2; 3); (3; 2)}

Suy ra có một cặp nghiệm thỏa mãn yêu cầu bài toán là (x; y) = (3; 2)

Đáp án:A

5 tháng 5 2017

Câu 2/

Điều kiện xác định b tự làm nhé:

\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)

\(\Leftrightarrow x^4-25x^2+150=0\)

\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)

Tới đây b làm tiếp nhé.

6 tháng 5 2017

a. ĐK: \(\frac{2x-1}{y+2}\ge0\)

Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)

\(\)Dấu bằng xảy ra khi  \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\) 

Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)

b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)

\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)

\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)

30 tháng 10 2017

Đặt \(\frac{1}{2x-y}\)= a, \(\frac{1}{x +y}\)= b, ta có \(\hept{\begin{cases}3a-6b=1\\a-b=0\end{cases}}\)

Giải hệ phương trình được a=\(\frac{-1}{3}\), b=\(\frac{-1}{3}\)
 

29 tháng 10 2016

Đặt \(\hept{\begin{cases}x+1=a\\y=b\end{cases}}\)

Thì ta có hệ ban đầu

\(\Leftrightarrow\hept{\begin{cases}1\left(a-1\right)\left(b^2+6\right)=b\left(a^2+1\right)\left(3\right)\\\left(b-1\right)\left(a^2+6\right)=a\left(b^2+1\right)\left(4\right)\end{cases}}\)

Trừ vế theo vế rồi thu gọn ta được

\(\left(a-b\right)\left(a+b-2ab+7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a-b=0\left(5\right)\\a+b-2ab+7=0\left(6\right)\end{cases}}\)

TH (5) thay vào (3) ta được

(a - 1)(a2 + 6) = a(a2 + 1)

<=> a2 - 5a + 6 = 0

\(\orbr{\begin{cases}a=2\\a=3\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

TH (6) ta lấy (3) và (4) trừ vế theo vế rồi rút gọn ta được

\(\left(a-\frac{5}{2}\right)^2+\left(b-\frac{5}{2}\right)^2=\frac{1}{2}\)

Kết hợp với (6) ta có hệ pt đối xứng loại I giải ra sẽ có nghiệm là

(a,b) = (2,2;3,3;2,3;3,2)

29 tháng 10 2016

Giải bằng điện thoại nên dễ sai sót lắm bạn kiểm tra lại giúp m nhé 

6 tháng 3 2016

ố ô dài thế tôi làm 1 nửa thôi nhá