Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lambda = v/f = 80/20 = 4cm.\)
\(\triangle \varphi = \pi-0=\pi.\)
Nhận xét: \(BM-AM=(BI+IM)-(AI-IM)=2MI\)
\( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{BM-AM}{\lambda}-\frac{\triangle\varphi}{2\pi})|\\=|2a\cos\pi(\frac{2MI}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{6}{4}-\frac{\pi}{2\pi})| = |-2a|=2a=10 mm.\)
Số điểm cực đại trên đoạn AG là số giá trị k thỏa mãn \(-AG \leq (k+\frac{\triangle \phi}{2\pi})\lambda \leq AG \Rightarrow -\frac{AB}{4}.3=10.875cm \leq (k+0.5)\lambda \leq 10.875\\ \Rightarrow -5.94 \leq k \leq 4.94 \Rightarrow k = -5,-4,\ldots,0,1,\ldots,4\)
có 10 điểm dao động cực đại trên đoạn AG
\(\lambda =\frac{v}{f}=\frac{50}{10}=5cm.\)
Điểm M ngược pha với điểm I khi: \(\triangle \phi=\phi_I-\phi_M = 2\pi \frac{d_1-d_{1}^{'}}{\lambda}=(2k+1)\pi \Rightarrow d_1-d_1^{'}=(2k+1)\frac{\lambda}{2}\)
Để điểm M gần I nhất thì hiệu d1 - d1' cũng phải nhỏ nhất khi đó k chỉ nhận giá trị nhỏ nhất là k = 0.
\(d_{1}-d_{1}^{'}=(2.0+1)\frac{5}{2}=2.5cm\Rightarrow d_1 = 7.5cm.\)
\(\Rightarrow MI= \sqrt {d_1^{2}-d_1^{'2}}\) = \(\sqrt{7.5^2-2.5^2}=\sqrt{50}cm\)
Đáp án: A
HD Giải: λ = 80 2 π 100 π = 1,6cm
M cùng pha với nguồn A nên MA = d = (được rút ra từ phương trình sóng tại M với d1 = d2 = d)
Ta có điều kiện MA > AO = AB/2 nên
<=> 1,6k > 6
<=> k > 3,75
MA nhỏ nhất nên chọn k = 4
MA = 4.1,6 = 6,4 cm
- Gọi d1, d2 là khoảng cách từ M đến 2 nguồn (M thuộc đường tròn và thỏa yêu cầu)
+ M thuộc đường tròn nên góc AMB là góc vuông
+ M dao động với biên độ cực đại nên: d1 - d2 = kλ
- Giải hệ phương trình trên ta được:
+ Chỉ có k = 0 là thỏa mãn ⇒ d1 = d2 = 8 cm
+ M dao động cùng pha với nguồn nên:
- Vậy có tất cả 2 điểm.
+ Gọi d1, d2 là khoảng cách từ M đến 2 nguồn ( M thuộc đường tròn và thỏa yêu cầu)
+ M thuộc đường tròn nên góc AMB là góc vuông → d12 + d22 = ( 8 2 ) 2
+ M dao động với biên độ cực đại nên: d1 - d2 = kl
Mà λ = v . T = 0 , 6 . 2 π 30 π = 0 , 04 m m
+ Giải hệ phương trình trên ta được: 2d22 + 8kd2 + 16k2 - 128 = 0
Chỉ có k = 0 là thỏa mãn → d1 = d2 = 8 cm
+ M dao động cùng pha với nguồn nên d1 + d2 = 2k’l → k’ = 2
Vậy có tất cả 2 điểm.
Đáp án D
+ Gọi d1, d2 là khoảng cách từ M đến 2 nguồn (M thuộc đường tròn và thỏa yêu cầu)
+ M thuộc đường tròn nên góc AMB là góc vuông ® d12 + d22 = 8 2 2
+ M dao động với biên độ cực đại nên: d1- d2 = kl
Mà λ = v . T = 0 , 6 . 2 π 30 π = 0 , 04 m
+ Giải hệ phương trình trên ta được: 2d22 + 8kd2 + 16k2- 128 = 0
Chỉ có k = 0 là thỏa mãn ® d1 = d2 = 8 cm
+ M dao động cùng pha với nguồn nên d1 + d2 = 2k’l® k’ = 2
Vậy có tất cả 2 điểm.
Chọn đáp án D
Chọn A
trên đoạn AB có 5 “bó sóng” vớ O là bụng của bó trung tâm. Các bó đối xứng nhau qua một bụng thì cùng pha nên có hai điểm khác cùng pha với O