K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2018

xin lỗi mik mới lớp 8 thui  kg jup dc j ròi

18 tháng 8 2018

giup minh giai toan voi

20 tháng 9 2020

ĐK: ...

\(VT=\left[\frac{\left(1+sinx\right)-\left(1-sinx\right)}{\sqrt{1-sin^2x}}\right]^2=\left(\frac{2sinx}{cosx}\right)^2=4tan^2x=VP\left(đpcm\right)\)

28 tháng 7 2018

xem câu đầu ở đây nè https://olm.vn/hoi-dap/question/1248282.html

\(cosx=\sqrt{1-\dfrac{7}{16}}=\dfrac{3}{4}\)

\(tanx=\dfrac{\sqrt{7}}{4}:\dfrac{3}{4}=\dfrac{\sqrt{7}}{3}\)

\(cotx=1:\dfrac{\sqrt{7}}{3}=\dfrac{3}{\sqrt{7}}=\dfrac{3\sqrt{7}}{7}\)

\(M=\left(\dfrac{3}{7}\sqrt{7}+\dfrac{1}{3}\sqrt{7}\right):\left(\dfrac{3}{7}\sqrt{7}-\dfrac{1}{3}\sqrt{7}\right)\)

\(=\dfrac{16}{21}:\dfrac{2}{21}=8\)

12 tháng 8 2018

khó bạn ơi

12 tháng 8 2018

vì thế mới hỏi ^_^

18 tháng 9 2020

bạn ghi ra giúp mình được ko ạ

NV
18 tháng 9 2020

Kết quả rút gọn bằng \(2tanx\) bạn nhé, ko phải ra 1

18 tháng 8 2018

a) ta có : \(sin^2x+cos^2x=1\Leftrightarrow\dfrac{9}{25}+cos^2x=1\Leftrightarrow cos^2x=\dfrac{16}{25}\)

\(\Rightarrow cosx=\pm\dfrac{4}{5}\)

ta có : \(tanx=\dfrac{sinx}{cosx}=\dfrac{\dfrac{3}{5}}{\pm\dfrac{4}{5}}=\pm\dfrac{3}{4}\) \(\Rightarrow cot=\dfrac{1}{tan}=\dfrac{1}{\pm\dfrac{3}{4}}=\pm\dfrac{4}{3}\)

vậy ................................................................................................

b) ta có : \(tanx=\sqrt{3}\Leftrightarrow cotx=\dfrac{1}{tanx}=\dfrac{1}{\sqrt{3}}\)

ta có : \(\dfrac{sin^2x+cos^2x}{cos^2x}=1+tan^2x\Leftrightarrow\dfrac{1}{cos^2x}=1+tan^2x\)

\(\Leftrightarrow\dfrac{1}{cos^2x}=1+\left(\sqrt{3}\right)^2=4\Rightarrow cos^2x=\dfrac{1}{4}\) \(\Leftrightarrow cos^2x=\pm\dfrac{1}{2}\)

ta có : \(sin^2x+cos^2x=1\Leftrightarrow sin^2x=1-\dfrac{1}{4}=\dfrac{3}{4}\Rightarrow sinx=\pm\dfrac{\sqrt{3}}{2}\)

vậy .............................................................................................

câu c bn làm tương tự câu a ; còn câu d bn làm tương tự câu b nha :)