Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: ...
\(VT=\left[\frac{\left(1+sinx\right)-\left(1-sinx\right)}{\sqrt{1-sin^2x}}\right]^2=\left(\frac{2sinx}{cosx}\right)^2=4tan^2x=VP\left(đpcm\right)\)
xem câu đầu ở đây nè https://olm.vn/hoi-dap/question/1248282.html
\(cosx=\sqrt{1-\dfrac{7}{16}}=\dfrac{3}{4}\)
\(tanx=\dfrac{\sqrt{7}}{4}:\dfrac{3}{4}=\dfrac{\sqrt{7}}{3}\)
\(cotx=1:\dfrac{\sqrt{7}}{3}=\dfrac{3}{\sqrt{7}}=\dfrac{3\sqrt{7}}{7}\)
\(M=\left(\dfrac{3}{7}\sqrt{7}+\dfrac{1}{3}\sqrt{7}\right):\left(\dfrac{3}{7}\sqrt{7}-\dfrac{1}{3}\sqrt{7}\right)\)
\(=\dfrac{16}{21}:\dfrac{2}{21}=8\)
a) ta có : \(sin^2x+cos^2x=1\Leftrightarrow\dfrac{9}{25}+cos^2x=1\Leftrightarrow cos^2x=\dfrac{16}{25}\)
\(\Rightarrow cosx=\pm\dfrac{4}{5}\)
ta có : \(tanx=\dfrac{sinx}{cosx}=\dfrac{\dfrac{3}{5}}{\pm\dfrac{4}{5}}=\pm\dfrac{3}{4}\) \(\Rightarrow cot=\dfrac{1}{tan}=\dfrac{1}{\pm\dfrac{3}{4}}=\pm\dfrac{4}{3}\)
vậy ................................................................................................
b) ta có : \(tanx=\sqrt{3}\Leftrightarrow cotx=\dfrac{1}{tanx}=\dfrac{1}{\sqrt{3}}\)
ta có : \(\dfrac{sin^2x+cos^2x}{cos^2x}=1+tan^2x\Leftrightarrow\dfrac{1}{cos^2x}=1+tan^2x\)
\(\Leftrightarrow\dfrac{1}{cos^2x}=1+\left(\sqrt{3}\right)^2=4\Rightarrow cos^2x=\dfrac{1}{4}\) \(\Leftrightarrow cos^2x=\pm\dfrac{1}{2}\)
ta có : \(sin^2x+cos^2x=1\Leftrightarrow sin^2x=1-\dfrac{1}{4}=\dfrac{3}{4}\Rightarrow sinx=\pm\dfrac{\sqrt{3}}{2}\)
vậy .............................................................................................
câu c bn làm tương tự câu a ; còn câu d bn làm tương tự câu b nha :)