Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: x4 - x3 + 2x2 - x + 1 = 0
=> (x4 + 2x2 + 1) - x(x2 + 1) = 0
=> (x2 + 1)2 - x(x2 + 1) = 0
=> (x2 + 1)(x2 - x + 1) = 0
=> (x2 + 1)[(x2 - x + 1/4) + 3/4] = 0
=> (x2+ 1 )[(x - 1/2)2 + 3/4] = 0
=> pt vô nghiệm (vì x2 + 1 > 0; (x - 1/2)2 + 3/4 > 0)
b) Ta có: x3 + 2x2 - 7x + 4 = 0
=> (x3 - x) + (2x2 - 6x + 4) = 0
=> x(x2 - 1) + 2(x2 - 3x + 2) = 0
=> x(x - 1)(x + 1) + 2(x2 - 2x - x + 2) = 0
=> x(x - 1)(x + 1) + 2(x - 2)(x - 1) = 0
=> (x - 1)(x2 + x + 2x - 4) = 0
=> (x - 1)(x2 + 3x - 4) = 0
=> (x - 1)(x2 + 4x - x - 4) = 0
=> (x - 1)(x + 4)(x - 1) = 0
=> (x - 1)2(x + 4) = 0
=> \(\orbr{\begin{cases}x-1=0\\x+4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)
a) \(x^4-x^3+2x^2-x+1=0\)
\(\Leftrightarrow\left(x^4+2x^2+1\right)-x\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)^2-x\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+1-x\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\right]=0\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]=0\)
Ta có: \(\hept{\begin{cases}x^2+1>0\forall x\\\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\end{cases}}\)
\(\Rightarrow\)Phương trình vô nghiệm
Vậy không có giá trị x thỏa mãn đề bài
b) \(x^3+2x^2-7x+4=0\)
\(\Leftrightarrow\left(x^3-x\right)+\left(2x^2-6x+4\right)=0\)
\(\Leftrightarrow x\left(x^2-1\right)+2\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)+2\left(x^2-x-2x+2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)+2\left[x\left(x-1\right)-2\left(x-1\right)\right]=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)+2\left(x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x+1\right)+2\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2+x+2x-4\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2+3x-4\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2+4x-x-4\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x+4\right)-\left(x+4\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=-4\end{cases}}}\)
Vậy x=1; x=-4
Nhìn sơ qua thì thấy bài 3, b thay -2 vào x rồi giải bình thường tìm m
Bài 2:
a) \(x+x^2=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=0-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}\)
b) \(0x-3=0\)
\(\Leftrightarrow0x=3\)
\(\Rightarrow vonghiem\)
c) \(3y=0\)
\(\Leftrightarrow y=0\)
a) đặt \(\left(x^2+x\right)\)là \(y\)
ta có: \(3y^2-7y+4\)\(=0\)
<=>\(\left(3y-4\right)\left(y-1\right)=0\)
còn lại bạn tự xử nhé
a, x+2/5 >=0 <=> x+2 >=0 <=> x>=-2
b. x+2/x-3 <0 <=> 1+5/x-3 <0 <=> 5/x-3 <-1 <=> x-3> -5 <=> x>-2
c. x-1/x-3 >1 <=> 1+ 2/x-3 >1 <=> 2/x-3 >0 <=> x-3 >0 <=> x>3
a, ĐKXĐ \(\hept{\begin{cases}x\ne1\\x\ne2\\x\ne3\end{cases}x\ne4}\)
ta có \(đề\Leftrightarrow\frac{\left(x-1\right)^2+1}{x-1}+\frac{\left(x-4\right)^2+4}{x-4}=\frac{\left(x-2\right)^2+2}{x-2}+\frac{\left(x-3\right)^2+3}{x-3}\)
\(\Leftrightarrow x-1+\frac{1}{x-1}+x-4+\frac{4}{x-4}=x-2+\frac{2}{x-2}+x-3+\frac{3}{x-3}\)
\(\Leftrightarrow\frac{1}{x-1}+\frac{4}{x-4}=\frac{2}{x-2}+\frac{3}{x-3}\)
\(\Leftrightarrow\frac{1}{x-1}-\frac{2}{x-2}=\frac{3}{x-3}-\frac{4}{x-4}\)
\(\Leftrightarrow\frac{x-2-2x+2}{\left(x-1\right)\left(x-2\right)}=\frac{3x-12-4x+12}{\left(x-3\right)\left(x-4\right)}\)
\(\Leftrightarrow\frac{-x}{\left(x-1\right)\left(x-2\right)}=\frac{-x}{\left(x-3\right)\left(x-4\right)}\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=\left(x-3\right)\left(x-4\right)\)(đến đây bạn nhân ra tự giải nhé )
p/s :mình nghĩ bạn viết sai đề đấu + ở phép đầu tiên ko phải - bạn xem lại nhé
b,\(\Leftrightarrow[2\left(x-3\right)]^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x-6+x-1\right)\left(2x-6-x+1\right)=0\)
\(\Leftrightarrow\left(3x-7\right)\left(x-5\right)=0\)(bạn tự giải)
c,\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\left(do\left(x^2+1>0\right)\right)\)
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
Bài 3:
a) (3x - 2)(4x + 5)=0
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{-5}{4}\end{matrix}\right.\)
vậy phương trình có tập ngiệm S={\(\dfrac{-5}{4};\dfrac{2}{3}\)}
b) 2x(x-3)-5(x-3)=0
\(\Leftrightarrow\left(x-3\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\2x-5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=\dfrac{5}{2}\end{matrix}\right.\)
vậy phương trình có tập ngiệm S={\(3;\dfrac{5}{2}\)}
c) 2x(x + 3) + 5(x + 3)=0
\(\Leftrightarrow\left(x+3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3=0\\2x+5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=\dfrac{-5}{2}\end{matrix}\right.\)
vậy phương trình có tập ngiệm S={\(-3;\dfrac{-5}{2}\)}
\(a,2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-5\\x=3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{2}\\x=3\end{cases}}\)
Vậy .........
\(b,\left(x^2-4\right)+\left(x-2\right)\left(3-2x=0\right)\)
\(\Leftrightarrow x^2-4-2x^2+7x-6=0\)
\(\Leftrightarrow-x^2+7x-10=0\)
\(\Leftrightarrow-\left(x-5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}\)
Vậy ..................
\(c,x^3-3x^2+3x-1=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Leftrightarrow x=1\)
\(d,x\left(2x-7\right)-4x+14=0\)
\(\Leftrightarrow2x^2-7x-4x+14=0\)
\(\Leftrightarrow2x^2-11x+14=0\)
\(\Leftrightarrow\left(2x-7\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=2\end{cases}}\)
Vậy ............
\(e,\left(2x-5\right)^2-\left(x+2\right)^2=0\)
\(\Leftrightarrow4x^2-20x+25-x^2-4x-4=0\)
\(\Leftrightarrow3x^2-24x+21=0\)
\(\Leftrightarrow3\left(x-7\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=1\end{cases}}\)
Vậy .....................
\(f,x^2-x-\left(3x-3\right)=0\)
\(\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Vậy ..............
a) Biến đổi về dạng (x - 3)(x + 2) = 0. Tìm được x ∈ { - 2 ; 3 }
b) Thu gọn về dạng -2x + 3 = 0. Tìm được x = 3 2