Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{3y}{9}=\frac{4z}{36}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
=> x=2.4=8
3y=2.9=18 => y=6
4z=2.36=72 => z=18
Vậy x=8; y=6; z=18
b) Đặt \(\frac{x}{3}=\frac{y}{4}=k\)
=> x=3k; y=4k
Mà: xy=192
=> 3k.4k=192
=> 12k2=192
=> k2=16
=> k=\(\pm\)4
TH1: k=4
=> x=4.3=12; y=4.4=16
TH2: k=-4
=> x= -4.3=-12; y=-4,3.4=-16
Vậy (x;y) thõa mãn là (12;16);(-12;-16)
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{62}{4-9+36}=\frac{62}{31}=2\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=2.4\\y=2.3\\z=2.9\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x=8\\y=6\\z=18\end{array}\right.\)
Vậy x = 8 ; y = 6 ; z = 18
b) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{xy}{3y}=\frac{192}{3y}\)
\(\Rightarrow\frac{y}{4}=\frac{192}{3y}\Rightarrow y.3y=192.4\)
\(\Rightarrow y^2.3=768\Rightarrow y^2=\frac{768}{3}=256\)
\(\Rightarrow y=\sqrt{256}=16;y=-\sqrt{256}=-16\)
Với y = 16 => x = \(\frac{192}{16}=12\)
Với y = -16 => x = \(\frac{192}{-16}=-12\)
Vậy x = 12 ; y = 16
hoặc x = -12 ; y = -16
a,\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\Leftrightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)=3
Ta đặt: \(\frac{x}{3}=\frac{y}{4}=k\)
=> Ta có: x = 3k ; y = 4k
=> 3k . 4k = 48
=> xy = 12.k2 = 48
=> k2 = 48 : 12 = 4
=> k = 2
=> x = 2x3 = 6
=> y = 2x4 = 8
Vậy x = 6 và y = 8
CHÚC BẠN HỌC TỐT
=>\(\frac{x^2}{3^2}=\frac{y^2}{4^2}=\frac{x}{3}.\frac{y}{4}\)
=>\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{xy}{12}=\frac{48}{12}=4\)
=>\(\left(\frac{x}{3}\right)^2=\left(\frac{y}{4}\right)^2=2^2=\left(-2\right)^2\)
TH1:\(\frac{x}{3}=\frac{y}{4}=2\)
=>x=2.3=6 và y=2.4=8
TH2:\(\frac{x}{3}=\frac{y}{4}=-2\)
=>x=-2.3=-6 và y=-2.4=-8
Vậy (x;y) E {(6;8);(-6;-8)}
ta có \(\frac{x\left(x.y\right)}{y\left(x.y\right)}=\frac{3}{10}:\left(-\frac{3}{50}\right)=-5=\frac{x}{y}\)
\(x=-5y\)suy ra \(-5\left(-5y-y\right)=\frac{3}{10}\)suy ra \(30y^2=\frac{3}{10}\)
nên \(y=\frac{1}{10}\)hoặc \(y=-\frac{1}{10}\)
+) Với \(y=\frac{1}{10}\)suy ra \(x=-5.\frac{1}{10}=-\frac{1}{2}\)
+) Với \(y=-\frac{1}{10}\)suy ra \(x=-5.\left(-\frac{1}{10}\right)=\frac{1}{2}\).
Chúc làm bài may mắn
Đặt \(\frac{x}{3}=\frac{y}{4}=t\Rightarrow x=3t,y=4t\)
Ta có: \(xy=48\)
\(\Rightarrow\left(3t\right).\left(4t\right)=48\)
\(\Rightarrow12t^2=48\)
\(\Rightarrow t^2=4\Rightarrow\orbr{\begin{cases}t=2\\t=-2\end{cases}}\)
Ta có bảng sau:
t | 2 | -2 |
x = 3t | 6 | -6 |
y = 4t | 8 | -8 |
Chúc bạn học tốt.
Ta có x/3 = y/4 và ta lại có x . y = 48
Do đó x . y / 3 . 4 = 48/12 = 4
Nên x = 3 . 4 = 12
y = 4 . 4 = 16
hok tốt nhé
kb lun
Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)
=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
=>x=27;z=36;z=60
Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)
+)k=-2 => x=-4;y=-5
+)k=2 => x=4;y=5
Vậy x=-4;y=-5 hoặc x=4;y=5
Cho \(\frac{x}{3}=\frac{y}{4}=k\)biết \(xy=48\)
\(\Rightarrow x=3k;y=4k\)
\(\Rightarrow xy=3k.4k\)
\(\Rightarrow48=12k^2\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=-2\)hoặc \(k=2\)
*Trường hợp 1: k=-2
x=3k => x=3.(-2)=-6
y=4k=4.(-2)=-8
*trường hợp 2 : k=2
x=3k=3.2=6
y=4k=4.2=8
Vậy : x=-6;y=-8 hoặc x=6;y=8
\(\frac{x}{3}=\frac{y}{4}=k\Rightarrow x=3k\) ; \(y=4k\)
Ta có : \(x.y=192\Rightarrow3k.4k=192\)
\(12k^2=192\Rightarrow k^2=16\Rightarrow\orbr{\begin{cases}k=4\\k=-4\end{cases}}\)
Với \(k=4\Rightarrow x=4.3=12\); \(y=4.4=16\)
Với \(k=-4\Rightarrow x=-4.3=-12\); \(y=-4.4=-16\)
Vậy x = 12 hoặc -12 ; y = 16 hoặc -16
đề bài là tìm x;y;z