Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x-3\right|+\left|x+2\right|=7\)
-TH: \(x< -2\) thì ta được phương trình :
\(3-x+-x-2=7\)
\(\Leftrightarrow-2x=6\)
\(\Leftrightarrow x=-3\left(c\right)\)
-TH: \(-2\le x< 3\) thì ta được phương trình:
\(3-x+x+2=7\)
\(\Leftrightarrow5=7\)(vô lí nên loại)
-TH: \(x\ge3\) thì ta được phương trình:
\(x-3+x+2=7\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\left(c\right)\)
Vậy nghiệm của phương trình là \(S=\left\{-3;4\right\}\)
3a)Ta xét:
-TH: \(x< 0\) thì \(x-2< 0\) và \(x-3< 0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\left(l\right)\)
-TH: \(0< x< 2\) thì \(x>0\), \(x-2< 0\) và \(x-3< 0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)>0\left(c\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-2< 0\\x-3< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< 2\\x< 3\end{matrix}\right.\)
\(\Rightarrow0< x< 2\)
-TH: \(2< x< 3\) thì \(x>0\), \(x-2>0\) và \(x-3< 0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\left(l\right)\)
-TH: \(x>3\) thì \(x>0\), \(x-2>0\) và \(x-3>0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)>0\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-2>0\\x-3>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x>2\\x>3\end{matrix}\right.\)
\(\Rightarrow x>3\)
Vậy nghiệm của phương trình là 0<x<2 và x>3
b)Dựa vào câu a ta có:
-TH: \(x< 0\) thì \(x-2< 0\) và \(x-3< 0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\)
\(\Rightarrow\left\{{}\begin{matrix}x< 0\\x< 2\\x< 3\end{matrix}\right.\)
\(\Rightarrow x< 0\)
-TH:\(2< x< 3\) thì \(x>0\), \(x-2>0\), \(x-3< 0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x>2\\x< 3\end{matrix}\right.\)
\(\Rightarrow2< x< 3\)
Vậy nghiệm của phương trình là x<0 và 2<x<3
Không biết có đúng không nữa
Bài 1:
a)
\((\frac{3}{5})^2-[\frac{1}{3}:3-\sqrt{16}.(\frac{1}{2})^2]-(10.12-2014)^0\)
\(=\frac{9}{25}-(\frac{1}{9}-1)-1\)
\(=\frac{9}{25}-\frac{1}{9}=\frac{56}{225}\)
b)
\(|-\frac{100}{123}|:(\frac{3}{4}+\frac{7}{12})+\frac{23}{123}:(\frac{9}{5}-\frac{7}{15})\)
\(=\frac{100}{123}:\frac{4}{3}+\frac{23}{123}:\frac{4}{3}=(\frac{100}{123}+\frac{23}{123}):\frac{4}{3}=1:\frac{4}{3}=\frac{3}{4}\)
c)
\(\frac{(-5)^{32}.20^{43}}{(-8)^{29}.125^{25}}=\frac{5^{32}.(2^2.5)^{43}}{(-2)^{3.29}.(5^3)^{25}}=\frac{5^{32}.2^{86}.5^{43}}{-2^{87}.5^{75}}\)
\(=\frac{5^{32+43}.2^{86}}{-2^{87}.5^{75}}=\frac{5^{75}.2^{86}}{-2^{87}.5^{75}}=-\frac{1}{2}\)
Bài 2:
a)
\(\frac{2}{3}-(\frac{3}{4}-x)=\sqrt{\frac{1}{9}}=\frac{1}{3}\)
\(\frac{3}{4}-x=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)
\(x=\frac{3}{4}-\frac{1}{3}=\frac{5}{12}\)
b)
\((\frac{1}{2}-x)^2=(-2)^2=2^2\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}-x=-2\\ \frac{1}{2}-x=2\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{5}{2}\\ x=\frac{-3}{2}\end{matrix}\right.\)
c)
\(|3x+\frac{1}{2}|-\frac{2}{3}=1\)
\(|3x+\frac{1}{2}|=\frac{2}{3}+1=\frac{5}{3}\)
\(\Rightarrow \left[\begin{matrix} 3x+\frac{1}{2}=\frac{5}{3}\\ 3x+\frac{1}{2}=-\frac{5}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{7}{18}\\ x=\frac{-13}{18}\end{matrix}\right.\)
d)
\(3^{2x+1}=81=3^4\)
\(\Rightarrow 2x+1=4\Rightarrow x=\frac{3}{2}\)
Bài 1
\(a,\left(\frac{3}{5}\right)^2-\left[\frac{1}{3}:3-\sqrt{16}.\left(\frac{1}{2}\right)^2\right]-\left(10.12-2014\right)^0\)
\(=\frac{9}{25}-\left[\frac{1}{9}-4.\frac{1}{4}\right]-1\)
\(=\frac{9}{25}-\left(-\frac{8}{9}\right)-1\)
\(=\frac{9}{25}+\frac{8}{9}-1\)
\(=\frac{56}{225}\)
\(b,|-\frac{100}{123}|:\left(\frac{3}{4}+\frac{7}{12}\right)+\frac{23}{123}:\left(\frac{9}{5}-\frac{7}{15}\right)\)
\(=\frac{100}{123}:\left(\frac{4}{3}\right)+\frac{23}{123}:\frac{4}{3}\)
\(=\left(\frac{100}{123}+\frac{23}{123}\right):\frac{4}{3}\)
\(=1:\frac{4}{3}=\frac{3}{4}\)
Phần c đăng riêng vì mk chưa tìm đc cách giải bt mỗi đáp án :v
\(c,\frac{\left(-5\right)^{32}.20^{43}}{\left(-8\right)^{29}.125^{25}}\)
\(=\frac{\left(-5\right)^{32}.\left(4.5\right)^{43}}{\left[4.\left(-2\right)\right]^{29}.\left(-5^3\right)^{25}}\)
\(=\frac{-5^{32}.4^{43}.5^{43}}{4^{29}.\left(-2\right)^{29}.\left(5\right)^{75}}\)
\(=\frac{\left(-5^4\right)^8.4^{43}.5^{43}}{4^{29}.\left(-2\right)^{29}.\left(5^3\right)^{25}}\)
\(=-\frac{1}{2}\)
- Với \(x=0\) ko thỏa mãn
- Với \(x=-1\Rightarrow y=0\)
- Với \(\left[{}\begin{matrix}x>0\\x< -1\end{matrix}\right.\) \(\Rightarrow x\left(x+1\right)>0\)
Pt \(\Leftrightarrow x^3+x^2+x+1=\left(2y^{333}\right)^3\)
Ta có: \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\Rightarrow x^3+x^2+x+1>x^3\)
\(x\left(x+1\right)>0\Rightarrow x^3+x^2+x+1=\left(x+1\right)^3-2x\left(x+1\right)< \left(x+1\right)^3\)
\(\Rightarrow x^3< \left(2y^{333}\right)^3< \left(x+1\right)^3\)
\(\Rightarrow\left(2y^{333}\right)^3\) nằm giữa 2 lập phương đúng liên tiếp nên không thể là 1 lập phương đúng \(\Rightarrow\) không tồn tại y nguyên thỏa mãn
Vậy pt đã cho có cặp nghiệm nguyên duy nhất: \(\left(x;y\right)=\left(-1;0\right)\)
\(a,\left(\frac{2}{5}\right)^6.\left(\frac{25}{4}\right)^2=\left(\frac{2}{2.3}\right)^6.\left(\frac{5}{2}\right)^4\)
\(=\frac{1}{3^6}.\frac{5^4}{2^4}=\frac{5^4}{3^6.2^4}\)
\(b,\frac{100}{123}:\left(\frac{3}{4}+\frac{7}{12}\right)+\frac{23}{123}:\left(\frac{9}{5}-\frac{7}{15}\right)\)
\(=\frac{100}{123}:\left(\frac{9+7}{12}\right)+\frac{23}{123}:\left(\frac{27-7}{15}\right)\)
\(=\frac{100}{123}:\frac{16}{12}+\frac{23}{123}:\frac{20}{15}\)
\(=\frac{100.12}{123.16}+\frac{23.15}{123.20}\)
\(=\frac{5.5.4.3.4}{41.3.4.4}+\frac{23.3.5}{41.3.4.5}\)
\(=\frac{25}{41}+\frac{23}{164}=\frac{25.4+23}{164}\)
\(=\frac{123}{164}=\frac{3}{4}\)