K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2020

\(\frac{x-3}{504}+\frac{x-5}{1007}=\frac{x-1}{2018}+\frac{x-4}{403}\)

<=> \(\frac{x-3}{504}-4+\frac{x-5}{1007}-2=\frac{x-1}{2018}-1+\frac{x-4}{403}-5\)

<=> \(\frac{x-2019}{504}+\frac{x-2019}{1007}=\frac{x-2019}{2018}+\frac{x-2019}{403}\)

<=> \(\left(x-2019\right)\left(\frac{1}{504}+\frac{1}{1007}-\frac{1}{2018}-\frac{1}{403}\right)=0\)

<=> x - 2019 = 0 

( vì \(\frac{1}{504}+\frac{1}{1007}-\frac{1}{2018}-\frac{1}{403}\ne0\)

<=> x = 2019 

vậy x = 2019.

30 tháng 3 2020

ĐK: \(x\in R\backslash\left\{-4,-3,-2,-1\right\}\)

PT ban đầu

\(\Leftrightarrow\frac{x+2-x-1}{\left(x+1\right)\left(x+2\right)}+\frac{x+3-x-2}{\left(x+2\right)\left(x+3\right)}+\frac{x+4-x-3}{\left(x+3\right)\left(x+4\right)}+\frac{x+5-x-4}{\left(x+4\right)\left(x+5\right)}=\frac{1}{x+1}-403\\ \Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}=\frac{1}{x+1}-403\\ \Leftrightarrow\frac{1}{x+5}=403\\ \Leftrightarrow x+5=\frac{1}{403}\Leftrightarrow x=\frac{-2014}{403}\)

Chúc bạn học tốt nhaok.

30 tháng 3 2020

Sr bạn nha, nhưng điều kiện là \(x\in R\backslash\left\{-5,-4,-3,-2,-1\right\}\). (Xét thiếu :>)

Chúc bạn học tốt nhaok.

27 tháng 2 2020

bạn là nam hay nữ zở

27 tháng 2 2020

bn nhìn tên rồi đoán nha bn

24 tháng 2 2020

d, \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)

\(\Leftrightarrow\frac{x+1}{9}+1+\frac{x+2}{8}+1=\frac{x+3}{7}+1+\frac{x+4}{6}+1\)

\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)

\(\Leftrightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)

\(\Leftrightarrow x+10=0\) (Vì \(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\) ≠ 0)

\(\Leftrightarrow x=-10\)

Vậy x = -10 là nghiệm của phương trình.

24 tháng 2 2020

Hỏi đáp ToánHỏi đáp Toán

5 tháng 4 2020

a, Làm

\(\frac{x+1}{2020}+\frac{x+2}{2019}+\frac{x+3}{2018}=\frac{x+4}{2017}+\frac{x+5}{2016}+\frac{x+6}{2015}\)

<=>\(\frac{x+2021}{2020}+\frac{x+2021}{2019}+\frac{x+2021}{2018}=\frac{x+2021}{2017}+\frac{x+2021}{2016}+\frac{x+2021}{2015}\)

<=>\(\left(x+2021\right)\left(\frac{1}{2020}+\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)

<=> x+2021=0

<=> x=-2021

Kl:......................

b, Làmmmmm

\(\frac{2-x}{2004}-1=\frac{1-x}{2005}-\frac{x}{2006}\)

<=> \(\frac{2006-x}{2004}=\frac{2006-x}{2005}+\frac{2006-x}{2006}\)

<=> \(\left(2006-x\right)\left(\frac{1}{2004}-\frac{1}{2005}-\frac{1}{2006}\right)=0< =>2006-x=0\)

<=> x=2006

Kl:..............

a) Ta có: \(\left(3x-1\right)^2+\left(4x+5\right)^2=\left(5x-7\right)^2\)

\(\Leftrightarrow9x^2-6x+1+16x^2+40x+25=25x^2-70x+49\)

\(\Leftrightarrow25x^2+34x+26-25x^2+70x-49=0\)

\(\Leftrightarrow104x-23=0\)

\(\Leftrightarrow104x=23\)

hay \(x=\frac{23}{104}\)

Vậy: \(S=\left\{\frac{23}{104}\right\}\)

b) Ta có: \(\left(x-2\right)^3+\left(x+2\right)^3=2\left(x-3\right)\left(x^2+3x+9\right)\)

\(\Leftrightarrow\left(x-2+x+2\right)\left[\left(x-2\right)^2-\left(x-2\right)\left(x+2\right)+\left(x+2\right)^2\right]=2\left(x^3-27\right)\)

\(\Leftrightarrow2x\cdot\left(x^2-4x+4-x^2+4+x^2+4x+4\right)=2x^3-54\)

\(\Leftrightarrow2x\cdot\left(x^2+12\right)-2x^3+54=0\)

\(\Leftrightarrow2x^3+24x-2x^3+54=0\)

\(\Leftrightarrow24x=54\)

hay \(x=\frac{9}{4}\)

Vậy: \(S=\left\{\frac{9}{4}\right\}\)

c) Ta có: \(2014x-10.07=20.14x-1007\)

\(\Leftrightarrow2014x-10.07-20.14x+1007=0\)

\(\Leftrightarrow1993.86x+1017.07=0\)

\(\Leftrightarrow1993.86x=-1017.07\)

\(\Leftrightarrow x=-\frac{101}{198}\)

Vậy: \(S=\left\{-\frac{101}{198}\right\}\)

d) Ta có: \(\frac{x-5}{2}+\frac{x-5}{3}-\frac{1}{4}=\frac{1}{2}+\frac{1}{3}-\frac{x-5}{4}\)

\(\Leftrightarrow\frac{x-5}{2}+\frac{x-5}{3}+\frac{x-5}{4}=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)

\(\Leftrightarrow\left(x-5\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)

\(\Leftrightarrow x-5=1\)

hay x=6

Vậy: S={6}