Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(B=\left(2x-5\right)\cdot3x-2x\left(3x+1\right)\)
\(=6x^2-15x-6x^2-2x\)
\(=-17x\)
Thay \(x=\frac{1}{2}\) vào biểu thức B=-17x, ta được:
\(B=-17\cdot\frac{1}{2}=\frac{-17}{2}\)
Vậy: \(-\frac{17}{2}\) là giá trị của biểu thức \(B=\left(2x-5\right)\cdot3x-2x\left(3x+1\right)\) tại \(x=\frac{1}{2}\)
b) Ta có: \(G=\left(x+3\right)\cdot4x-3x\left(x-2\right)-x^2\)
\(=4x^2+12x-3x^2+6x-x^2\)
=18x
Thay x=-2 vào biểu thức G=18x, ta được:
\(G=18\cdot\left(-2\right)=-36\)
Vậy: -36 là giá trị của biểu thức \(G=\left(x+3\right)\cdot4x-3x\left(x-2\right)-x^2\) tại x=-2
Bài 2:
Sửa đề: \(P=\left(x-2\right)\cdot x-3x\left(x+1\right)+2x^2+5x-3\)
Ta có: \(P=\left(x-2\right)\cdot x-3x\left(x+1\right)+2x^2+5x-3\)
\(=x^2-2x-3x^2-3x+2x^2+5x-3\)
\(=-3\)
Vậy: P không phụ thuộc vào x(đpcm)
\(\Leftrightarrow\frac{5\left(x+5\right)-3\left(x-3\right)}{15}=\frac{5\left(x+5\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)
\(\Leftrightarrow\frac{2x+34}{15}=\frac{2x+34}{x^2+2x-15}\Leftrightarrow\orbr{\begin{cases}2x+34=0\\x^2+2x-15=15\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-17\\x^2+2x-30=0\end{cases}}\)
Từ đó tìm được \(S=\left\{-17;\sqrt{31}-1;-\sqrt{31}-1\right\}\)
a) \(\dfrac{x+5}{3}-\dfrac{x-3}{5}=\dfrac{5}{x-3}-\dfrac{3}{x+5}\)
\(\Rightarrow\dfrac{5\left(x+5\right)}{15}-\dfrac{3\left(x-3\right)}{15}=\dfrac{5\left(x+5\right)}{\left(x-3\right)\left(x+5\right)}-\dfrac{3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)
\(\Rightarrow\dfrac{5\left(x+5\right)-3\left(x-3\right)}{15}=\dfrac{5\left(x+5\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)
* Với \(5\left(x+5\right)-3\left(x-3\right)=0\),
Ta có được đẳng thức đúng
=> 5x + 25 - 3x + 9 = 0
=> 2x + 34 = 0
=> 2x = -34
=> x = -17
* Với 5( x+5 ) - 3 (x-3 ) \(\ne\)0, ta có
\(\dfrac{5\left(x+5\right)-3\left(x-3\right)}{15}=\dfrac{5\left(x+5\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)
\(\Rightarrow\dfrac{1}{15}=\dfrac{1}{\left(x-3\right)\left(x+5\right)}\)
\(\Rightarrow\left(x-3\right)\left(x+5\right)=15\)
\(\Rightarrow x^2+5x-3x-15-15=0\)
\(\Rightarrow x^2+2x-30=0\)
=> \(\left(x+1-\sqrt{31}\right)\left(x+1+\sqrt{31}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1+\sqrt{31}\\x=-1-\sqrt{31}\end{matrix}\right.\)
\(a)\dfrac{x+5}{3}-\dfrac{x-3}{5}=\dfrac{5}{x-3}-\dfrac{3}{x+5}\)(ĐKXĐ: \(x\ne3,x\ne-5\))
\(\Leftrightarrow\dfrac{x+5}{3}-\dfrac{x-3}{5}-\dfrac{5}{x-3}+\dfrac{3}{x+5}=0\\ \Leftrightarrow\dfrac{5\left(x-3\right)\left(x+5\right)^2-3\left(x-3\right)^2\left(x+5\right)-75\left(x+5\right)+45\left(x-3\right)}{15\left(x-3\right)\left(x+5\right)}=0\\ \Leftrightarrow\dfrac{2x^3+38x^2+8x-1020}{15\left(x-3\right)\left(x+5\right)}=0\\ \Leftrightarrow2x^3+38x^2+8x-1020=0\\ \Leftrightarrow\left(x+17\right)\left(x^2+2x-30\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+17=0\\x^2+2x-30=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-17\left(TM\right)\\x=-1+\sqrt{31}\left(TM\right)\\x=-1-\sqrt{31}\left(TM\right)\end{matrix}\right.\)
Vậy....
a ) \(\frac{4}{x+2}+\frac{2}{x-2}+\frac{5x-6}{4-x^2}=\frac{4\left(x-2\right)+2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{6-5x}{\left(x+2\right)\left(x-2\right)}=\frac{6x-4+6-5x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x+2}{\left(x+2\right)\left(x-2\right)}=\frac{1}{x+2}\)
b ) \(\frac{1-3x}{2x}+\frac{3x-2}{2x-1}+\frac{3x-2}{2x-4x^2}=\frac{\left(1-3x\right)\left(2x-1\right)+2x\left(3x-2\right)+2-3x}{2x\left(2x-1\right)}\)
\(=\frac{-6x^2+5x-1+6x^2-4x+2-3x}{2x\left(2x-1\right)}=\frac{-2x+1}{2x\left(2x-1\right)}=\frac{-1}{2x}\)
c ) \(\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}=\frac{1}{\left(x+3\right)^2}+\frac{1}{-\left(x-3\right)^2}+\frac{x}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{\left(x-3\right)^2-\left(x+3\right)^2+x\left(x+3\right)\left(x-3\right)}{\left(x+3\right)^2\left(x-3\right)^2}=\frac{-12x+x^3-9x}{\left(x+3\right)^2\left(x-3\right)^2}=\frac{x^3-21x}{x^4-18x^2+81}\)
d ) \(\frac{x^2+2}{x^3-1}+\frac{2}{x^2+x+1}+\frac{1}{1-x}=\frac{x^2+2+2\left(x-1\right)-\left(x^2+x+1\right)}{x^3-1}=\frac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{1}{x^2+x+1}\)
e ) \(\frac{x}{x-2y}+\frac{x}{x+2y}+\frac{4xy}{4y^2-x^2}=\frac{x\left(x+2y\right)+x\left(x-2y\right)-4xy}{\left(x-2y\right)\left(x+2y\right)}=\frac{2x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2x}{x+2y}\)
\(b,\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x-\frac{x-3}{2}}{5}-x+1\)
\(\Leftrightarrow\frac{2x}{15}-\frac{4-3x}{75}=\frac{7x}{5}-\frac{x-3}{10}-x+1\)
\(\Leftrightarrow\frac{10.2x}{150}-\frac{2\left(4-3x\right)}{150}=\frac{30.7x}{150}-\frac{15\left(x-3\right)}{150}-\frac{150\left(x-1\right)}{150}\)
\(\Leftrightarrow2x-8+6x=210x-15x+45-150x+150\)
\(\Leftrightarrow-19x=203\)
\(\Leftrightarrow x=-\frac{203}{19}\)
Vậy ............
\(ĐK:x\ne\pm1\)
\(PT\Leftrightarrow\frac{3x+2}{\left(x-1\right)^2}-\frac{6}{\left(x+1\right)\left(x-1\right)}-\frac{3x-2}{\left(x+1\right)^2}\)
Bạn tự quy đồng rồi rút gọn nhé!!