K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2016

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{3x-1}{5}=\frac{5y-2}{7}=\frac{3x+5y-3}{4x}=\frac{\left(3x-1\right)+\left(5y-2\right)}{5+7}=\frac{3x+5y-3}{12}.\)

\(\frac{3x+5y-3}{4x}=\frac{3x+5y-3}{12}\Rightarrow4x=12\Rightarrow x=3\)

16 tháng 8 2016

cảm ơn nhiều nha!

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

25 tháng 9 2018

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

suy ra:  \(x=2k;\)\(y=3k;\)\(z=4k\)

Ta có:   \(x^2+y^2+z^2=116\)

<=>  \(\left(2k\right)^2+\left(3k\right)^2+\left(4k\right)^2=116\)

<=>  \(29k^2=116\)

<=>  \(k^2=4\)

<=>  \(k=\pm2\)

tự làm nốt

18 tháng 7 2017

1. -2x=5y =>\(\frac{x}{y}=\frac{-5}{2}=>y=\frac{-2x}{5}\)

Thế y=\(\frac{-2x}{5}\) ta được:

x+\(\frac{-2x}{5}\)=30     \(\Rightarrow\frac{5x-2x}{5}=30\)

\(\Rightarrow3x=150\)\(\Rightarrow x=50\)

=>y=30-x=30-50=-20.

Vậy x=50; y=-20.

Những bài khác tương tự bạn nhé!

5 tháng 11 2017

bạn kia làm đúng rồi

k tui nha 

thank

12 tháng 7 2017

Áp dụng tính chất dãy tỉ số bằng nhau: 

\(\frac{x+3}{5}=\frac{y-2}{3}=\frac{z-1}{7}=\frac{3x+9}{15}=\frac{5y-10}{15}=\frac{7z-7}{49}=\frac{3x+9-5y+10+7z-7}{15-15+49}=\frac{86+12}{49}=\frac{98}{49}=2\)

=>x=2.5-3=7;y=2.3+2=8;z=2.7+1=15

12 tháng 7 2017

cais đầu nhân cả tử và mẫu với 3, cái thứ 2 nhân vs 5 ,cái thứ 3 nhân vs 7 sd DTSBN là xong

21 tháng 11 2018

Ta có :

\(\frac{x+3}{5}=\frac{y-2}{3}=\frac{z-1}{7}=\frac{3x+9}{15}=\frac{5y-10}{15}=\frac{7z-7}{49}=\frac{3x+9+5y-10-7z+7}{15+15-49}\)

\(=\frac{3x+5y-7z+6}{-19}=\frac{32+6}{-19}=-2\)

=> x = ( - 2 ) . 5 - 3 = -13

     y = ( - 2 ) . 3 + 2 = -4

    z  = ( - 2 ) . 7 + 1 = - 13

Vậy x = -13 ; y = -4 ; z = -13

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

27 tháng 10 2019

x=225

y=315

z=405

e) Ta có:

\(\left\{{}\begin{matrix}2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\Leftrightarrow\frac{1}{7}.\frac{x}{3}=\frac{1}{7}.\frac{y}{2}\Leftrightarrow\frac{x}{21}=\frac{y}{14}\\7z=5y\Leftrightarrow\frac{z}{5}=\frac{y}{7}\Leftrightarrow\frac{1}{2}.\frac{z}{5}=\frac{1}{2}.\frac{y}{7}\Leftrightarrow\frac{z}{10}=\frac{y}{14}\end{matrix}\right.\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=42\\y=28\\z=20\end{matrix}\right.\)

f)Ta có:

\(\frac{x}{4}=\frac{y}{5}=k\Leftrightarrow\left\{{}\begin{matrix}x=4k\\y=5k\end{matrix}\right.\)

\(\Rightarrow xy=4k5k=20k^2=80\Leftrightarrow k^2=4\Leftrightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)

TH1: \(k=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=8\\y=10\end{matrix}\right.\)

TH2: \(k=-2\)

\(\Rightarrow\left\{{}\begin{matrix}x=-8\\y=-10\end{matrix}\right.\)

g)Ta có:

\(\frac{x+3}{5}=\frac{y-2}{3}=\frac{z-1}{7}=\frac{3\left(x+3\right)}{15}=\frac{5\left(y-2\right)}{15}=\frac{7\left(z-1\right)}{49}=\frac{3x+9}{15}=\frac{5y-10}{15}=\frac{7z-7}{49}=\frac{3x+9+5y-10-\left(7z-7\right)}{15+15-49}=\frac{3x+5y-7z+\left(9-10+7\right)}{-19}=\frac{38}{-19}=-2\)

\(\Rightarrow\left\{{}\begin{matrix}x=-13\\y=-4\\z=-13\end{matrix}\right.\) h)Ta có: \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x^2}{4^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{16-9}=\frac{63}{7}=9\) \(\Rightarrow\left\{{}\begin{matrix}x^2=144\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-12\end{matrix}\right.\\y^2=81\Leftrightarrow\left[{}\begin{matrix}y=9\\y=-9\end{matrix}\right.\end{matrix}\right.\) Vậy \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=12\\y=9\end{matrix}\right.\\\left\{{}\begin{matrix}x=-12\\y=-9\end{matrix}\right.\end{matrix}\right.\)

6 tháng 7 2018

a )  

Ta có : 

\(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{cases}}}\)

và \(x+y-z=69\)

ADTCDTSBN , ta có : 

\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{20}=3\\\frac{y}{24}=3\\\frac{z}{21}=3\end{cases}\Rightarrow\hept{\begin{cases}x=3.20=60\\y=3.24=72\\z=3.21=63\end{cases}}}\)

Vậy ...

b )  

Ta có : 

\(5y=72\Rightarrow y=\frac{72}{5}=14,4\)

\(\Rightarrow x=14,4.3:2=21,6\)

và \(3x+5y-7z=30\)

Thay vào làm tiếp : 

c ) 

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)

\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)

\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)

\(=\frac{5z-25-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\)( ADTCDTSBN ) 

\(=\frac{5z-25-3x+3-4y-12}{8}=\frac{5z-3x-4y-34}{8}\)

\(=\frac{50-34}{8}=\frac{16}{8}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2}=2\\\frac{y+3}{4}=2\\\frac{z-5}{6}=2\end{cases}\Rightarrow\hept{\begin{cases}x-1=2.2=4\\y+3=2.4=8\\z-5=2.6=12\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=5\\z=17\end{cases}}}\)

Vậy ...

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405