Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt tổng trên là A , ta có :
\(\frac{A}{2}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(\frac{A}{2}=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+...+\left(\frac{1}{98}-\frac{1}{99}\right)+\left(\frac{1}{99}-\frac{1}{100}\right)\)
\(\frac{A}{2}=\left(1-\frac{1}{100}\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+...+\left(\frac{1}{98}-\frac{1}{98}\right)+\left(\frac{1}{99}-\frac{1}{99}\right)\)\(\frac{A}{2}=\frac{99}{100}\)
\(A=\frac{99}{100}.2\)
\(A=\frac{99}{50}\)
đặt A = 1.2. + 2.3 + 3.4 + ... + 49.50
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 49.50.3
3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 49.50.(51 - 48)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 49.50.51 - 48.49.50
3A = 49.50.51
A = 41650
Thay vào ta được
41650 + 1/2x = 40642
=> 1/2x = 1008
=> x = 2016
\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}=\frac{1}{5}\)
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}=\frac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\frac{1}{5}\)
dấu bằng của mk bt liệt nên bạn thông cảm
A bằng (1.2.3.4).(1.2.3.4)/(1.2.3.4).(2.3.4.5) bằng 5
rút gọn cho nhau bạn nhé
hình như là 32 chứ k f 33
\(B=\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot\frac{4^2}{4\cdot5}\)
\(B=\frac{\left(1\cdot1\right)\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)}{\left(1\cdot2\right)\left(2\cdot3\right)\left(3\cdot4\right)\left(4\cdot5\right)}\)
\(B=\frac{\left(1\cdot2\cdot3\cdot4\right)\left(1\cdot2\cdot3\cdot4\right)}{\left(1\cdot2\cdot3\cdot4\right)\left(2\cdot3\cdot4\cdot5\right)}\)
\(=\frac{1}{5}\)
\(B=\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot\frac{4^2}{4\cdot5}\)
\(B=\frac{1^2\cdot2^2\cdot3^2\cdot4^2}{1\cdot2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot5}\)
\(B=\frac{1^2\cdot2^2\cdot3^2\cdot4^2}{1^2\cdot2^2\cdot3^2\cdot4^2\cdot5}=\frac{1}{5}\)
Đặt biểu thức trên là A
Ta có: A =(1^2 . 2^2 . 3^2 . 4^2)/(1.2.2.3.3.4.4.5)
= [(1.2.3.4).(1.2.3.4)] / [(1.2.3.4).(2.3.4.5)]
= 1/5
Vậy A = 1/5
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)
=\(\frac{1.1.2.2.3.3.4.4}{1.2.2.3.3.4.4.5}\)
=\(\frac{1}{5}\)
\(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{49.50}\)
\(A=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{50}\right)\)
\(A=2.\frac{12}{25}=\frac{2.12}{25}=\frac{24}{25}\)
sorry mình nhầm
ta có:
M=\(\frac{1^2}{1.2}\).\(\frac{2^2}{2.3}\).\(\frac{3^2}{3.4}\).\(\frac{4^2}{4.5}\)
=\(\frac{1.1.2.2.3.3.4.4}{1.2.2.3.3.4.4.5}\)
=\(\frac{1}{5}\)
vậy M=\(\frac{1}{5}\)
TÔI KHÔNG THỐNG NHẤT
kết quả là 241fac