K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2020

đặt A = 1.2. + 2.3 + 3.4 + ... + 49.50

3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 49.50.3

3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 49.50.(51 - 48)

3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 49.50.51 - 48.49.50

3A = 49.50.51

A = 41650

Thay vào ta được

41650 + 1/2x = 40642

=> 1/2x = 1008

=> x = 2016

1 tháng 4 2016

ta có : 1/1.2+1/2.3+1/3.4+1/4.5+....+1/49.50

= 1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+.....+1/49-1/50

=1/1-1/50

= 49/50

1 tháng 4 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\frac{1}{1}-\frac{1}{50}\)

\(=\frac{49}{50}\)

12 tháng 5 2017

A = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

=\(1-\frac{1}{50}\)

Vì \(1-\frac{1}{50}< 1\)nên A < 1

B = \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

=\(\frac{1}{2}-\frac{1}{100}\)

Vì \(\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)nên B < \(\frac{1}{2}\)

12 tháng 5 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}\)

\(\Rightarrow A< 1\)

\(B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(B=\frac{1}{2}-\frac{1}{100}\)

\(\Rightarrow B< \frac{1}{2}\)

26 tháng 2 2018

a)hình như =55

4 tháng 5 2019

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x(x+1)}=\frac{2019}{2020}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{2020}\)

\(\Rightarrow1-\frac{1}{x+1}=\frac{2019}{2020}\)

\(\Rightarrow\frac{1}{x+1}=1-\frac{2019}{2020}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2020}\)

\(\Rightarrow x+1=2020\Leftrightarrow x=2019\)

Vậy x = 2019

8 tháng 4 2016

= 1-1/x+1 = 17/18

=> 1/x+1 = 1-17/18= 1/18

=> x+1 = 18 => x=17

8 tháng 4 2016

ta có 1/1.2+1/2.3+1/3.4+1/4.5+...+1/x.(x+1)=17/18

1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1=17/18

1-1/x+1=17/18

1/x+1=1-17/18

1/x+1=1/18

suy ra: x+1=18

x=18-1

x=17

8 tháng 4 2016

=> 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ........ + 1 /x - 1/x + 1 = 17 /18

=> 1 - 1/x+1 = 17/18

=> 1/x+1 = 1/18

=> x + 1 = 18

=> x = 17 (tm)

Vậy x = 17 nha!

Ai mk mk lại !!

8 tháng 4 2016

1/1.2 + 1/2.3 + 1/3.4 +......+ 1/x(x+1) = 17/18

=> 1- 1/x+1 = 17/18

=>  1/x +1 = 1-17/18

=> 1/x+1 = 1/18

=> x= 17 

2 tháng 2 2020

Đặt tổng trên là A , ta có :

\(\frac{A}{2}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(\frac{A}{2}=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+...+\left(\frac{1}{98}-\frac{1}{99}\right)+\left(\frac{1}{99}-\frac{1}{100}\right)\)

\(\frac{A}{2}=\left(1-\frac{1}{100}\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+...+\left(\frac{1}{98}-\frac{1}{98}\right)+\left(\frac{1}{99}-\frac{1}{99}\right)\)\(\frac{A}{2}=\frac{99}{100}\)

\(A=\frac{99}{100}.2\)

\(A=\frac{99}{50}\)

14 tháng 7 2018

\(x-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}=\frac{1}{4.5}\)

\(x-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-\frac{1}{4.5}=0\)

\(x-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\right)=0\)

\(x-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\right)=0\)

\(x-\left(1-\frac{1}{5}\right)=0\)

\(x-\frac{4}{5}=0\)

\(x=\frac{4}{5}\)

14 tháng 7 2018

\(x-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}=\frac{1}{4.5}\)

\(x-\left(1-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{3}\right)-\left(\frac{1}{3}-\frac{1}{4}\right)=\frac{1}{4}-\frac{1}{5}\)

\(x-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}=\frac{-1}{5}\)

\(x-1=-\frac{1}{5}\)

\(x=\frac{4}{5}\)