K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2018

\(\frac{1}{3}< =\frac{x^2+x+1}{x^2-x+1}\Rightarrow x^2-x+1< =3x^2+3x+3\Rightarrow x^2-x+1-3x^2-3x-3< =0\)

\(\Rightarrow-2x^2-4x-2< =0\Rightarrow-2\left(x^2+2x+1\right)< =0\Rightarrow-2\left(x+1\right)^2< =0\)

vì \(\left(x+1\right)^2>=0;-2< 0\Rightarrow-2\left(x+1\right)^2< =0\)luôn đúng \(\Rightarrow\frac{1}{3}< =\frac{x^2+x+1}{x^2-x+1}\)luôn dúng (1)

cái kia cx tương tự như vậy nhé

\(\cdot\left(x+1\right)^2\ge0\)

\(\Rightarrow x^2+2x+1>0\)

\(\Rightarrow2x^2+4x+2\ge0\)

 \(\Rightarrow\left(3x^2+3x+3\right)-\left(x^2-x+1\right)\ge0\)

\(\Rightarrow3\left(x^2+x+1\right)\ge x^2-x+1\)

\(\Rightarrow\)\(\frac{x^2+x+1}{x^2-x+1}\ge\frac{1}{3}\) (1)

\(\cdot\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow2x^2-4x+2\ge0\)

\(\Rightarrow\left(3x^2-3x+3\right)-\left(x^2+x+1\right)\ge0\)

\(\Rightarrow3\left(x^2-x+1\right)\ge x^2+x+1\)

\(\Rightarrow\frac{x^2+x+1}{x^2-x+1}\le3\)(2)

Từ(1),(2) => đpcm

4 tháng 8 2020

Ta có:

\(\frac{2.\left(x^2+x+1\right)}{x^2+1}=\frac{2.\left(x^2+1\right)+2x}{x^2+1}=2+\frac{2x}{x^2+1}\)

Ta có:\(2+\frac{2x}{x^2+1}-1=1+\frac{2x}{x^2+1}\)

\(=\frac{x^2+2x+1}{x^2+1}=\frac{\left(x+1\right)^2}{x^2+1}\ge0\)  \(\Rightarrow\frac{2.\left(x^2+x+1\right)}{x^2+1}\ge1\)

\(2+\frac{2x}{x^2+1}-3=\frac{2x}{x^2+1}-1=\frac{-x^2+2x-1}{x^2+1}\)

\(=\frac{-\left(x-1\right)^2}{x^2+1}\le0\) \(\Rightarrow\frac{2.\left(x^2+x+1\right)}{x^2+1}\le3\)

Vậy \(1\le\frac{2.\left(x^2+x+1\right)}{x^2+1}\le3\)

17 tháng 5 2017

Bất đẳng thứ côsi hả bạn

17 tháng 5 2017

Mình sửa lại đề nhé:

\(\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\le\frac{3}{2}\le\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)

Dễ dàng chứng minh được: \(x^2+1\ge2x\Leftrightarrow\frac{x}{x^2+1}\le\frac{x}{2x}=\frac{1}{2}\)

Tương tự, ta cũng có: \(\frac{y}{y^2+1}\le\frac{1}{2};\frac{z}{z^2+1}\le\frac{1}{2}\)

Cộng từng vế của 3 BĐT trên ta được ĐPCM.

Ta chứng minh BĐT: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge9\)

\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge6\)

BĐT này đúng với \(\frac{a}{b}+\frac{b}{a}\ge2\)

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\), ta được:

\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{3+x+y+z}\ge\frac{9}{3+3}\ge\frac{3}{2}\)

7 tháng 3 2018

Tịnh tách các bài ra nhé.

29 tháng 4 2019

Vì số lượng bài khá nhiều và mình cũng không có quá nhiều thời gian nên không tránh khỏi sai sót, nếu phát hiện mong bạn thông cảm! Bài của tớ làm khá tắt bước, chỉ nên tham khảo. Bạn có thể tự biểu diễn tập nghiệm được không?

a. \(x+8>3x-1\)

\(\Leftrightarrow-2x>-9\)

\(\Leftrightarrow x< \frac{9}{2}\)

b. \(3x-\left(2x+5\right)\le\left(2x-3\right)\)

\(\Leftrightarrow3x-2x-5\le2x-3\)

\(\Leftrightarrow-x\le2\)

\(\Leftrightarrow x\ge2\)

c. \(\left(x-3\right)\left(x+3\right)< x\left(x+2\right)+3\)

\(\Leftrightarrow x^2-9< x^2+2x+3\)

\(\Leftrightarrow2x>-12\Leftrightarrow x>-6\)

d. \(2\left(3x-1\right)-2x< 2x+1\)

\(\Leftrightarrow6x-2-2x< 2x+1\)

\(\Leftrightarrow2x< 3\)

\(\Leftrightarrow x< \frac{3}{2}\)

e. \(\frac{3-2x}{5}>\frac{2-x}{3}\)

\(\Leftrightarrow3\left(3-2x\right)>5\left(2-x\right)\)

\(\Leftrightarrow9-6x>10-5x\)

\(\Leftrightarrow-x>1\) \(\Leftrightarrow x< -1\)

f. \(\frac{x-2}{6}-\frac{x-1}{3}\le\frac{x}{2}\)

\(\Leftrightarrow x-2-2\left(x-1\right)\le3x\)

\(\Leftrightarrow x-2-2x+2\le3x\)

\(\Leftrightarrow-4x\le0\Leftrightarrow x\ge0\)

g. \(\frac{x+1}{3}>\frac{2x-1}{6}\ge4\)

\(\Leftrightarrow2x+2>2x-1\ge24\)

\(\Leftrightarrow2x+2>2x\ge25\)

\(\Leftrightarrow x\ge\frac{25}{2}\)

h. \(1+\frac{2x+1}{3}>\frac{2x-1}{6}-2\)

\(\Leftrightarrow6+4x+2>2x-1-12\)

\(\Leftrightarrow2x>-25\)

\(\Leftrightarrow x>-\frac{25}{2}\)

i. \(\frac{x+5}{6}-\frac{2x+1}{3}\le\frac{x+3}{2}\)

\(\Leftrightarrow x+5-4x-2\le3x+9\)

\(\Leftrightarrow-6x\le6\)

\(\Leftrightarrow x\ge-1\)

j. \(\frac{5x+4}{6}-\frac{2x-1}{12}\ge4\)

\(\Leftrightarrow10x+8-2x+1\ge48\)

\(\Leftrightarrow8x\ge39\)

\(\Leftrightarrow x\ge\frac{39}{8}\)

30 tháng 4 2019

Bạn tự biểu diễn nghiệm trên trục số nhé!

a) \(x+8>3x-1\)

\(\Leftrightarrow x-3x>-8-1\)

\(\Leftrightarrow-2x>-9\)

\(\Leftrightarrow x< \frac{9}{2}\)

b) 3x − (2x+5) ≤ (2x−3)

\(\Leftrightarrow3x-2x-5\le2x-3\)

\(\Leftrightarrow3x-2x+2x\le5-3\)

\(\Leftrightarrow3x\le2\)

\(\Leftrightarrow x\le\frac{2}{3}\)

c) (x − 3) (x + 3) < x (x + 2) + 3

\(\Leftrightarrow x^2-9< x^2+2x+3\)

\(\Leftrightarrow x^2-x^2+2x< 9+3\)

\(\Leftrightarrow2x< 12\)

\(\Leftrightarrow x< 6\)

d) 2 (3x − 1) − 2x < 2x + 1

\(\Leftrightarrow6x-2-2x< 2x+1\)

\(\Leftrightarrow6x-2x+2x< 2+1\)

\(\Leftrightarrow6x< 3\)

\(\Leftrightarrow x< \frac{3}{6}\)

e) \(\frac{3-2x}{5}>\frac{2-x}{3}\)

\(\Leftrightarrow\frac{\left(3-2x\right)\times3}{15}>\frac{\left(2-x\right)\times5}{15}\)

\(\Leftrightarrow9-6x>10-5x\)

\(\Leftrightarrow-6x+5x>-9+10\)

\(\Leftrightarrow-x>1\)

\(\Leftrightarrow x< -1\)

f)\(\frac{x-2}{6}-\frac{x-1}{3}\le\frac{x}{2}\)

\(\Leftrightarrow x-2-2\left(x-1\right)\le3x\)

\(\Leftrightarrow x-2-2x+2\le3x\)

\(\Leftrightarrow-4x\le0\)

\(\Leftrightarrow x\ge0\)

g) \(\frac{x+1}{3}>\frac{2x-1}{6}\ge4\)

\(\Leftrightarrow\frac{\left(x+1\right)\cdot2}{6}>\frac{2x-1}{6}\ge\frac{4\cdot6}{6}\)

\(\Leftrightarrow2x+2>2x+1\ge24\)

\(\Leftrightarrow2x+2>2x\ge25\)

\(\Leftrightarrow x\ge\frac{25}{2}\)

h)\(1+\frac{2x+1}{3}>\frac{2x-1}{6}-2\)

\(\Leftrightarrow\frac{1}{6}+\frac{\left(2x+1\right)\cdot2}{6}>\frac{2x-1}{6}-\frac{2\cdot6}{6}\)

\(\Leftrightarrow6+4x+2>2x-1-12\)

\(\Leftrightarrow2x>-21\)

\(\Leftrightarrow x>\frac{-21}{2}\)

i)\(\frac{x+5}{6}-\frac{2x+1}{3}\le\frac{x+3}{2}\)

\(\Leftrightarrow\frac{x+5}{6}-\frac{\left(2x+1\right)\cdot2}{6}\le\frac{\left(x+3\right)\cdot3}{6}\)

\(\Leftrightarrow x+5-4x+2\le3x+9\)

\(\Leftrightarrow-3x-x+4x\le9-5-2\)

\(\Leftrightarrow x\le2\)

j) \(\frac{5x+4}{6}-\frac{2x-1}{12}\ge4\)

\(\Leftrightarrow\frac{\left(5x+4\right)\cdot2}{12}-\frac{2x-1}{12}\ge\frac{4\cdot12}{12}\)

\(\Leftrightarrow10x+8-2x-1\ge48\)

\(\Leftrightarrow10x-2x\ge48-8+1\)

\(\Leftrightarrow8x\ge41\)

\(\Leftrightarrow x\ge\frac{41}{8}\)

Mình không chắc là mình làm đúng đâu. Nhưng có sai sót gì thì cứ nói cho mình biết. Chúc bạn học tốt ^-^

23 tháng 7 2019

a) \(B=\frac{1}{x+3}+\frac{x}{x-1}-\frac{4x}{x^2+2x-3}=\frac{x-1}{x^2+2x-3}+\frac{x^2+3x}{x^2+2x-3}-\frac{4x}{x^2+2x-3}\)

\(\Leftrightarrow B=\frac{x-1+x^2+3x-4x}{x^2+2x-3}=\frac{x^2-1}{x^2+2x+1-4}=\frac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)^2-2^2}\)

\(\Leftrightarrow B=\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}=\frac{x+1}{x+3}\)

b) \(\frac{A-1}{B}=\frac{\frac{x-1}{x+3}-1}{\frac{x+1}{x+3}}=\frac{\frac{-4}{x+3}}{\frac{x+1}{x+3}}=\frac{-4}{x+1}\le\frac{1}{2}\Leftrightarrow-8\le x+1\Leftrightarrow x\ge-9\)