Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(+2x+3y⋮17\)
\(\Rightarrow26x+39y⋮17\)
\(\Rightarrow\left(9x+5y\right)+17x+34y⋮17\)
Mà \(17x+34y⋮17\)
\(\Rightarrow9x+5y⋮17\)
\(+9x+5y⋮17\)
\(\Rightarrow36x+20y⋮17\)
\(\Rightarrow\left(2x+3y\right)+34x+17y⋮17\)
Mà \(34x+17y⋮17\)
\(\Rightarrow2x+3y⋮17\)
Ta có: \(\frac{1}{2}A=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{100}{2^{101}}\)
\(A-\frac{1}{2}A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}-\frac{100}{2^{101}}\)
Ta có: \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}=1-\frac{1}{2^{100}}< 1\)
\(\Rightarrow\frac{1}{2}A< 1-\frac{100}{2^{101}}\)
\(\Rightarrow A< 2-\frac{200}{2^{101}}< 2\)
Vậy A<2
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(2A=1-\frac{1}{3^{99}}\)
\(A=\frac{1-\frac{1}{3^{99}}}{2}\)
Ta đặt \(C=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
Ta so sánh giữa A và C.
\(\frac{1}{3}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{3^3}< \frac{1}{3.4};....;\frac{1}{3^{99}}< \frac{1}{99.100}\Leftrightarrow A< C\)( 1 )
\(C=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
Mà \(\frac{99}{100}< \frac{1}{2}\Rightarrow C< B\)( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow A< C< B\Leftrightarrow A< B\)
Đặt \(K=\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{99}}\)
\(3K=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{98}}\)
\(3K-K=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{98}}-\left(\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{99}}\right)\)
\(2K=\)\(1-\frac{1}{3^{99}}\)
\(K=\frac{1-\frac{1}{3^{99}}}{2}\)
Có \(1-\frac{1}{3^{99}}\) < \(\frac{1}{2}\)
\(\Rightarrow K\) < \(\frac{1}{2}\)
Vậy \(\left(\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{99}}\right)\) < \(\frac{1}{2}\)
ta có: \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)
\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{100}}+\frac{1}{3^{101}}\)
\(\Rightarrow A-\frac{1}{3}A=\frac{1}{3}-\frac{1}{3^{101}}< \frac{1}{3}\)
\(\Rightarrow\frac{2}{3}A< \frac{1}{3}\)
\(\Rightarrow A< \frac{1}{3}:\frac{2}{3}\)
\(\Rightarrow A< \frac{1}{2}\)