Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(+2x+3y⋮17\)
\(\Rightarrow26x+39y⋮17\)
\(\Rightarrow\left(9x+5y\right)+17x+34y⋮17\)
Mà \(17x+34y⋮17\)
\(\Rightarrow9x+5y⋮17\)
\(+9x+5y⋮17\)
\(\Rightarrow36x+20y⋮17\)
\(\Rightarrow\left(2x+3y\right)+34x+17y⋮17\)
Mà \(34x+17y⋮17\)
\(\Rightarrow2x+3y⋮17\)
Ta có : \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{19}{20}\)
\(=\frac{1.2.3.....19}{2.3.4.....20}\)
\(=\frac{1}{20}>\frac{1}{21}\)
a) Ta có : 420 = (42)10 = 1610
330 = (33)10 = 2710
Vì 1610 < 2710 nên 420 < 330
b) Ta có : 721 = (73)7 = 3437
814 = (82)7 = 647
Vì 3437 > 647 nên 721 > 814
Ta có : \(\frac{1}{n^2}-1=\frac{1-n^2}{n^2}=\frac{\left(1-n\right)\left(1+1\right)}{n^2}\)
Áp dụng :
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{2014^2}-1\right)\)
\(=\frac{-1.3}{2.2}.\frac{-2.4}{3.3}.\frac{-3.5}{4.4}.....\frac{-2013.2015}{2014.2014}\)
\(=\frac{-\left(1.2.3...2013\right)\left(3.4.5....2015\right)}{\left(2.3.4.....2014\right)\left(2.3.4......2014\right)}=\frac{-2015}{2014.2}=\frac{-2015}{4028}\)
Sr còn thiếu
\(A=-\frac{2015}{4028}< \frac{-2014}{4028}=-\frac{1}{2}\)
Vậy \(A< B\)
Đặt \(K=\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{99}}\)
\(3K=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{98}}\)
\(3K-K=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{98}}-\left(\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{99}}\right)\)
\(2K=\)\(1-\frac{1}{3^{99}}\)
\(K=\frac{1-\frac{1}{3^{99}}}{2}\)
Có \(1-\frac{1}{3^{99}}\) < \(\frac{1}{2}\)
\(\Rightarrow K\) < \(\frac{1}{2}\)
Vậy \(\left(\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{99}}\right)\) < \(\frac{1}{2}\)