Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(K=\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{99}}\)
\(3K=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{98}}\)
\(3K-K=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{98}}-\left(\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{99}}\right)\)
\(2K=\)\(1-\frac{1}{3^{99}}\)
\(K=\frac{1-\frac{1}{3^{99}}}{2}\)
Có \(1-\frac{1}{3^{99}}\) < \(\frac{1}{2}\)
\(\Rightarrow K\) < \(\frac{1}{2}\)
Vậy \(\left(\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{99}}\right)\) < \(\frac{1}{2}\)
1) \(+2x+3y⋮17\)
\(\Rightarrow26x+39y⋮17\)
\(\Rightarrow\left(9x+5y\right)+17x+34y⋮17\)
Mà \(17x+34y⋮17\)
\(\Rightarrow9x+5y⋮17\)
\(+9x+5y⋮17\)
\(\Rightarrow36x+20y⋮17\)
\(\Rightarrow\left(2x+3y\right)+34x+17y⋮17\)
Mà \(34x+17y⋮17\)
\(\Rightarrow2x+3y⋮17\)
ta có: \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)
\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{100}}+\frac{1}{3^{101}}\)
\(\Rightarrow A-\frac{1}{3}A=\frac{1}{3}-\frac{1}{3^{101}}< \frac{1}{3}\)
\(\Rightarrow\frac{2}{3}A< \frac{1}{3}\)
\(\Rightarrow A< \frac{1}{3}:\frac{2}{3}\)
\(\Rightarrow A< \frac{1}{2}\)
Ta có : \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{19}{20}\)
\(=\frac{1.2.3.....19}{2.3.4.....20}\)
\(=\frac{1}{20}>\frac{1}{21}\)
Đề câu C sai nhé, sửa: ... < 1/2
\(C=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\\ 3C=1+\frac{1}{3}+...+\frac{1}{3^{98}}\\ 3C-C=1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{1}{3}-\frac{1}{3^2}-...-\frac{1}{3^{99}}\\ 2C=1-\frac{1}{3^{99}}\\ C=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\left(đpcm\right)\)
Đề câu D sai nhé, sửa: ... > -1/2
\(D=\left(\frac{1}{2^2}-1\right)\cdot\left(\frac{1}{3^2}-1\right)\cdot\left(\frac{1}{4^2}-1\right)\cdot...\cdot\left(\frac{1}{100^2}-1\right)< \left(\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}-1\right)\cdot\left(\frac{1}{4}-1\right)\cdot...\cdot\left(\frac{1}{100}-1\right)\)
Mặt khác \(\left(\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}-1\right)\cdot\left(\frac{1}{4}-1\right)\cdot...\cdot\left(\frac{1}{100}-1\right)\\ =\frac{-1}{2}\cdot\frac{-2}{3}\cdot\frac{-3}{4}\cdot...\cdot\frac{-99}{100}\\ =-\left(\frac{1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot4\cdot...\cdot100}\right)\\ =\frac{-1}{100}\)
Mà \(\frac{1}{100}< \frac{1}{2}\Rightarrow\frac{-1}{100}>\frac{-1}{2}\)
Vậy \(D< \frac{-1}{2}\left(đpcm\right)\)