Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cứ mỗi p/số kia bé hơn:1+1/1.2+1/2.3+1/3.4+....+1/49.50
phân phối ra nhé còn:2-1/50
mà 1/50>0
=>A<2
A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{50^2}\)
A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{1.1}+\frac{1}{1.2}+....+\frac{1}{49.50}\)
A=\(\frac{1}{1}-\frac{1}{50}=\frac{50}{50}-\frac{1}{50}=\frac{49}{50}<2=\frac{2}{1}\)
A=\(\frac{49}{50}<\frac{2}{1}=\frac{49}{50}<\frac{100}{50}\)
Vậy A<2 hay\(\frac{49}{50}<2\)
Ta có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(=1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)
Vì \(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};..;\frac{1}{50.50}< \frac{1}{49.50}\)nên :
\(\Rightarrow\) \(1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)
Ta có : \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(=1+\left(1-\frac{1}{50}\right)\)\(=1+\frac{49}{50}\)
Vì \(\frac{49}{50}< 1\)nên \(1+\frac{49}{50}< 2\)\(\Rightarrow\)\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)
\(\Rightarrow\)\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)
1/4+2/5+6/8+2/15+6/7
=(1/4+6/8)+(2/5+2/15)+6/7
=(2/8+6/8)+(6/15+2/15)+6/7
=1+8/15+6/7
=1+56/105+90/105
=1+146/105
=1+105/105+41/105
=1+1+41/105
=2+41/105
=2 và 41/105
2 và 41/105 là hỗn số nha
1/4+2/5+6/8+2/15+6/7
Ta có:
1/4=1-3/4
6/8=3/4
2/15=2/3*5=1/3-1/5
==> 1-3/4+2/5+3/4+1/3-1/5+6/7
=1+1/3+1/5+6/7
=(105+35+21+90)/105
=251/105.
Ta co :
E=\(\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{201}{2}\)
=\(\frac{2+3+4+5+...+201}{2}\)
=\(\frac{\left[\left(201+2\right)\left(201-2\right):1+1\right]:2}{2}\)
=\(\frac{40398:2}{2}\)
=\(\frac{20199}{2}\)
Đúng thì k không thì giúp tớ với
tôi chỉ bn nè muốn làm thì hẳng hok thuộc đề bài vừa hok thuộc vùa nghĩ về bài sẽ nhưng thế nào
Ta có : \(\frac{1}{1^2}=1\)
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< 2-\frac{1}{50}< 2\)
\(\Rightarrow A< 2\)
Vậy \(A< 2\)