Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A và B là giao của đồ thị lần lượt với 2 trục hoành và tung
\(\Rightarrow A\left(2m-1;0\right)\) ; \(B\left(0;-2m+1\right)\)
\(\Rightarrow OA=\left|x_A\right|=\left|2m-1\right|\) ; \(OB=\left|y_B\right|=\left|2m-1\right|\)
\(S_{OAB}=\frac{1}{2}OA.OB=\frac{1}{2}\left(2m-1\right)^2=\frac{25}{2}\)
\(\Leftrightarrow\left(2m-1\right)^2=25\Rightarrow\left[{}\begin{matrix}m=3\\m=-2\end{matrix}\right.\)
Câu 1 :
\(y=-\left(m^2+1\right)x+m-4\)
Để hàm số nghịch biến trên R
⇔ a < 0
⇔ \(-\left(m^2+1\right)\)< 0
⇔ \(m^2+1\) > 0
⇔ \(m^2\) > -1 ∀x ∈ R
⇔ m ∈ R
Vậy với mọi giá trị của m thì hàm số nghịch biến trên R
Câu 2 :
Gọi (d) : y =ax+b
Vì (d) cắt trục hoành tại điểm x = 3
nên (d) sẽ cắt điểm A(3;0)
A(3;0) ∈ (d) ⇔ 0 = 3a +b
Mà M(-2;4) ∈ (d) ⇔ 4 = -2a +b
Ta có : \(\left\{{}\begin{matrix}3a+b=0\\-2a+b=4\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}a=\dfrac{-4}{5}\\b=\dfrac{12}{5}\end{matrix}\right.\)
Vậy a=\(\dfrac{-4}{5}\) và b= \(\dfrac{12}{5}\)
Câu 3 :
(d) : \(y=2x+m+1\)
a) Vì (d) cắt trục hoành tại điểm có hoành độ bằng 3
nên (d) sẽ cắt điểm A(3;0)
A(3;0) ∈ (d) ⇔ 0 = 2 .3 + m+1⇔ m= -7
Vậy m = -7
b) Vì (d) cắt trục tung tại điểm có tung độ bằng -2
nên (d) sẽ cắt điểm B( 0;-2)
B( 0;-2) ∈ (d) ⇔ -2 = 0.2+m+1 ⇔ m = -3
Vậy m = -3
Câu 1:
a) Hàm số \(y=-x^2+2x+3\)
Cho x=0=>y=3 là giao điểm của đường thẳng với trục hoành.
b)
Tọa độ đỉnh I của hàm số \(\left(1;4\right)\)
Trục đối xứng là x=1
Do a=-1<0 nên hàm số đồng biến trên \(\left(-\infty;1\right)\) và nghịch biến trên khoảng \(\left(1;\infty\right)\).
( dựa vô đây bạn tự vẽ bảng biến thiên và vẽ đồ thị nha)
c ơi cái này là toán 7, thi học kì 1 mà, bọn em cũng đn ôn đề này á
Đáp án C