Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
Phương trình tiếp tuyến của (P) tại điểm M:
y = 4 x − 1 + 2 = 4 x − 2.
S = ∫ 0 1 2 x 2 − 4 x + 2 d x = 2 3 .
hoành độ giao điểm là nghiệm của pt
\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)
\(x=0;x^2+3x+m=0\)(*)
để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0
\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)
từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)
ta tính \(y'=3x^2+6x+m\)
vì tiếp tuyến tại Dvà E vuông góc
suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)
giải pt đối chiếu với đk suy ra đc đk của m
HD: Phương trình tiếp tuyến là y = 4x - 3.
Phương trình hoành độ giao điểm
x2 +1 = 4x - 3 ⇔ x2 - 4x + 4 = 0 ⇔ x = 2.
Do đó diện tích phải tìm là:
Chọn đáp án A
Giả sử A a ; a 2 và B b ; b 2 là hai điểm thuộc (P) và thỏa mãn AB = 2018.
Phương trình đường thẳng d đi qua hai điểm A và B là
Diện tích hình phẳng giới hạn bởi (P) và đường thẳng d là:
= 1 6 b - a 3
Gọi M là hình chiếu của A trên Ox và N là hình chiếu của B trên Ox. Suy ra M(a;0) và N(b;0).
Ta luôn có M N ≤ A B hay b - a = b - a ≤ 2018 .
Dấu “=” xảy ra khi MN//AB hay AB//Ox. Khi đó a = -1009; b = 1009.
Vậy S = 1 6 b - a 3 = 2018 3 6
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b
Chọn C.
Tiếp tuyến của (P) tại M(1;0) là d: y = 2x - 2
Phương trình hoành độ giao điểm x 2 - 1 = 2 x - 2 ⇔ x 2 - 2 x + 1 = 0 ⇔ x = 1 .