Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo bài ra ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
dựa vào tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\\ =\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{2z^2}{32}\\ =\dfrac{x^2-y^2+2z^2}{4-9+32}=\dfrac{108}{27}=4\)=>x=4.2=8
=>y=4.3=12 =>z=4.4=16 vậy x,y,z lần lượt là 8;12;16
Sửa đề: \(x^2-y^2+2z^2=108\)
Đặt x/2=y/3=z/5=k
=>x=2k; y=3k; z=5k
Ta có: \(x^2-y^2+2z^2=108\)
\(\Leftrightarrow4k^2-9k^2+50k^2=108\)
=>45k2=108
=>k2=12/5
TH1: \(k=\dfrac{2\sqrt{3}}{\sqrt{5}}\)
=>\(x=\dfrac{4\sqrt{3}}{\sqrt{5}};y=\dfrac{6\sqrt{3}}{\sqrt{5}};z=2\sqrt{15}\)
TH2: \(k=-\dfrac{2\sqrt{3}}{\sqrt{5}}\)
=>\(x=-\dfrac{4\sqrt{3}}{\sqrt{5}};y=-\dfrac{6\sqrt{3}}{\sqrt{5}};z=-2\sqrt{15}\)
Ta có: \(\dfrac{x}{2}=\dfrac{x^2}{4}\) ; \(\dfrac{y}{3}=\dfrac{y^2}{9}\) ; \(\dfrac{z}{4}=\dfrac{2z^4}{32}\)
Ta có: \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{2z^2}{32}=\dfrac{x^2-y^2+2z^2}{4-9+32}=\dfrac{108}{27}=4\)
\(x=4.2=8\)
\(y=4.3=12\)
\(z=4.32=128\)
Vậy 3 số cần tìm là:
x = 8; y = 12; z=128
a) Ta có: \(6x=4y=3z\Rightarrow\dfrac{6x}{12}=\dfrac{4y}{12}=\dfrac{3z}{12}\Rightarrow\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}=\dfrac{x+2y-3z}{2+6-12}=\dfrac{-2}{-4}=\dfrac{1}{2}.\)
Với: \(\dfrac{x}{2}=\dfrac{1}{2}\Rightarrow x=1.\)
\(\dfrac{2y}{6}=\dfrac{y}{3}=\dfrac{1}{2}\Rightarrow y=\dfrac{1}{2}.3=\dfrac{3}{2}.\)
\(\dfrac{3z}{12}=\dfrac{z}{4}=\dfrac{1}{2}\Rightarrow z=\dfrac{1}{2}.4=\dfrac{4}{2}=2.\)
Vậy: \(x=1;y=\dfrac{3}{2};z=2.\)
Ta có: x/2=y/3=z/4→x2/4=y2/9=2x2/32=x2-y2+2z2/4-9+32=108/27=81
Với x/2=81→x=81.2=162
Với y/3=81→y=81.3=243
Với z/4=81→81.4=324
Ta có:\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ,ta có:
\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}=\dfrac{2z^2}{32}=\dfrac{x^2-y^2+2z^2}{4-9+32}=\dfrac{108}{27}=4\)
\(\dfrac{x^2}{4}=4\Rightarrow x^2=16\Rightarrow x=4\)
\(\dfrac{y^2}{9}=4\Rightarrow y^2=36\Rightarrow y=6\)
\(\dfrac{z^2}{16}=4\Rightarrow z^2=64\Rightarrow z=8\)
a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)
Đến đây tự làm tiếp nhé
b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
=> x = 75, y = 50, z = 30
c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)
\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)
\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)
\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)
=> x=... , y=... , z=...
d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)
Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3
Với k = 3 => x = 6, y = 15
Với k = -3 => x = -6, y = -15
Vậy...
e, Tương tự câu d
b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)
=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)
\(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)
\(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)
a) \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{4}\) và \(x-y+z=-49\)
Ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\) (1)
\(\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{15}=\dfrac{z}{12}\) (2)
Từ (1) và (2) suy ra \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-49}{7}=-7\)
Vậy \(\left\{{}\begin{matrix}x=\left(-7\right).10=-70\\y=\left(-7\right).15=-105\\z=\left(-7\right).12=-84\end{matrix}\right.\)
b) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và \(x^2-y^2+2z^2=10\)
Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{2z^2}{32}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{2z^2}{32}=\dfrac{x^2-y^2+2z^2}{4-9+32}=\dfrac{10}{27}\)
Vậy ... (tự tính x, y, z nhé!)
Bài 1:
Giải:
Ta có: \(\left\{{}\begin{matrix}3x=4y\\5y=6z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{4}=\dfrac{y}{3}\\\dfrac{y}{6}=\dfrac{z}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{y}{6}\\\dfrac{y}{6}=\dfrac{z}{5}\end{matrix}\right.\Rightarrow\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}\)
Đặt \(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=8k\\y=6k\\z=5k\end{matrix}\right.\)
Mà \(xyz=30\)
\(\Rightarrow240k^3=30\)
\(\Rightarrow k^3=\dfrac{1}{8}\)
\(\Rightarrow k=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=3\\z=2,5\end{matrix}\right.\)
Vậy...
Bài 2: sai đề
Bài 3:
Đặt \(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=k\Rightarrow\left\{{}\begin{matrix}x=2k+1\\y=4k-3\\z=6k+5\end{matrix}\right.\)
Ta có: \(x+2y+3z=38\)
\(\Rightarrow2k+1+8k-6+18k+15=38\)
\(\Rightarrow28k=28\)
\(\Rightarrow k=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=1\\z=11\end{matrix}\right.\)
Vậy...
1) Ta có :
\(3x=4y\Rightarrow\dfrac{3x}{12}=\dfrac{4y}{12}\Rightarrow\dfrac{x}{4}=\dfrac{y}{3}\) <=> \(\dfrac{x}{8}=\dfrac{y}{6}\)
\(5y=6z\Rightarrow\dfrac{5y}{30}=\dfrac{6z}{30}\Rightarrow\dfrac{y}{6}=\dfrac{z}{5}\)
=> \(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}\)
Đặt \(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=8k\\y=6k\\z=5k\end{matrix}\right.\)
Thay vào đẳng thức xyz = 30
=> 8k.6k.5k = 30
<=> 240k3 = 30
<=> k3 = 8
<=> k = 2
\(\Rightarrow\left\{{}\begin{matrix}x=8.2=16\\y=6.2=12\\z=5.2=10\end{matrix}\right.\)
b) Câu này cũng tương tự câu 1 nha ! Đặt k luôn , còn không bình phương lên rồi dùng tính chất dãy tỉ số bằng nhau .
c) Đặt \(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=k\)
=> \(\left\{{}\begin{matrix}x=2k+1\\y=4k-3\\z=6k+5\end{matrix}\right.\)
Thay vào đẳng thức , ta có :
x + 2y + 3z = 2k + 1 + 2(4k - 3) + 3(6k + 5) = 38
=> 28k = 38
=> k = \(\dfrac{19}{14}\)
Vậy .....
Theo đề : \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và \(x^2+y^2+2z^2=108\)
\(\Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{3}\right)^2=\left(\dfrac{z}{4}\right)^2\Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{3}\right)^2=2.\left(\dfrac{z}{4}\right)^2=>\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{2z^2}{32}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{2z^2}{32}=\dfrac{x^2+y^2+2z^2}{4+9+32}=\dfrac{108}{45}=\dfrac{12}{5}\)
Với \(\dfrac{x^2}{2}=\dfrac{12}{5}\Rightarrow x^2=\dfrac{12}{5}.2=\dfrac{24}{5}\Rightarrow x=\dfrac{2\sqrt{30}}{5}\)
\(\dfrac{y^2}{3}=\dfrac{12}{5}\Rightarrow y^2=\dfrac{12}{5}.3=\dfrac{36}{5}\Rightarrow y=\dfrac{6\sqrt{5}}{5}\)
\(\dfrac{2z^2}{4}=\dfrac{12}{5}\Rightarrow2z^2=\dfrac{12}{5}.4=\dfrac{48}{5}\Rightarrow z^2=\dfrac{24}{5}=>\dfrac{2\sqrt{30}}{5}\)
tks