Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-1}{59}+\dfrac{x-2}{58}+\dfrac{x-3}{57}=\dfrac{x-4}{56}+\dfrac{x-5}{55}+\dfrac{x-6}{54}\)
\(\Leftrightarrow\dfrac{x-1}{59}-1+\dfrac{x-2}{58}-1+\dfrac{x-3}{57}=\dfrac{x-4}{56}-1+\dfrac{x-5}{55}-1+\dfrac{x-6}{54}-1\)
\(\Leftrightarrow\dfrac{x-60}{59}+\dfrac{x-60}{58}+\dfrac{x-60}{57}=\dfrac{x-60}{56}+\dfrac{x-60}{55}+\dfrac{x-60}{54}\)
\(\Leftrightarrow\left(x-60\right)\left(\dfrac{1}{59}+\dfrac{1}{58}+\dfrac{1}{57}-\dfrac{1}{56}-\dfrac{1}{55}-\dfrac{1}{54}\right)=0\)
\(\Leftrightarrow x-60=0\)
\(\Rightarrow x=60\)
vậy \(S=\left\{60\right\}\)
b) x-45/55 + x-47/53 = x-55/45 + x-53/47
<=>x-45/55 -1 + x-47/53 -1= x-55/45 -1 + x-53/47 - 1
<=>x-100/55 + x-100/53 = x-100/45 + x-100/47
<=>(x-100)(1/55+1/53-1/45-1/47)=0
<=>x-100=0
<=>x=100
Vậy x = 100
Bài này cần có công thức:
Ta có:\(x+\frac{1}{x}=3=>x^2+\frac{1}{x^2}=\left(x+\frac{1}{x}\right)^2-2=9-2=7\)
Lại có: \(x^5+\frac{1}{x^5}=\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)
=\(7\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}-1\right)-3=7.3.6-3=123\)
Vậy \(x^5+\frac{1}{x^5}=123\)
con này không nhầm có lời giửi rồi!
\(\left(x+\frac{1}{x}\right)=3\Rightarrow x^2+\frac{1}{x^2}=7\Rightarrow x^4+\frac{1}{x^4}=47\)
\(3.7=\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}\right)=\left(x^3+\frac{1}{x^3}\right)+\left(x+\frac{1}{x}\right)\)
\(\Rightarrow\left(x^3+\frac{1}{x^3}\right)=3.7-3=3.6\)
\(3.47=\left(x+\frac{1}{x}\right)\left(x^4+\frac{1}{x^4}\right)=\left(x^5+\frac{1}{x^5}\right)+x^3+\frac{1}{x^3}\\ \)
\(x^5+\frac{1}{x^5}=3.47-3.6=3\left(47-6\right)=3.41=123\)
\(\dfrac{x+1}{58}+\dfrac{x+2}{57}=\dfrac{x+3}{56}+\dfrac{x+4}{55}\)
\(\Leftrightarrow\left(\dfrac{x+1}{58}+1\right)+\left(\dfrac{x+2}{57}+1\right)=\left(\dfrac{x+3}{56}+1\right)+\left(\dfrac{x+4}{55}+1\right)\)
\(\Leftrightarrow\dfrac{x+59}{58}+\dfrac{x+59}{57}-\dfrac{x+59}{56}-\dfrac{x+59}{55}=0\)
\(\Leftrightarrow\left(x+59\right)\left(\dfrac{1}{58}+\dfrac{1}{57}-\dfrac{1}{56}-\dfrac{1}{55}\right)=0\)
\(\Leftrightarrow x+59=0\)
\(\Leftrightarrow x=-59\)
\(\dfrac{x+1}{58}+\dfrac{x+2}{59}=\dfrac{x+3}{56}+\dfrac{x+4}{55}\)
\(\Leftrightarrow\dfrac{x+1}{58}+1+\dfrac{x+2}{57}+1=\dfrac{x+3}{56}+1+\dfrac{x+4}{55}+1\)
\(\Leftrightarrow\dfrac{x+59}{58}+\dfrac{x+59}{57}=\dfrac{x+59}{56}+\dfrac{x+59}{55}\)
\(\Leftrightarrow\dfrac{x+59}{58}+\dfrac{x+59}{57}-\dfrac{x+59}{56}-\dfrac{x+59}{55}=0\)
\(\Leftrightarrow\left(x+59\right)\left(\dfrac{1}{58}+\dfrac{1}{57}-\dfrac{1}{56}-\dfrac{1}{55}\right)=0\)
Mà \(\dfrac{1}{58}+\dfrac{1}{57}-\dfrac{1}{56}-\dfrac{1}{55}\ne0\)
\(\Rightarrow x+59=0\)
\(\Leftrightarrow x=-59\)
Vậy: \(S=\left\{-59\right\}\)
a, \(\dfrac{59-x}{41}+\dfrac{57-x}{43}+\dfrac{55-x}{45}+\dfrac{53-x}{47}+\dfrac{51-x}{49}=-5\)
\(\Leftrightarrow\left(\dfrac{59-x}{49}+1\right)+\left(\dfrac{57-x}{43}+1\right)+\left(\dfrac{55-x}{45}+1\right)+\left(\dfrac{53-x}{47}+1\right)+\left(\dfrac{51-x}{49}+1\right)=0\)
\(\Leftrightarrow\dfrac{100-x}{45}+\dfrac{100-x}{43}+\dfrac{100-x}{45}+\dfrac{100-x}{47}+\dfrac{100-x}{49}=0\)
\(\Leftrightarrow\left(100-x\right).\left(\dfrac{1}{41}+\dfrac{1}{43}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{49}\right)=0\)
Mà \(\left(\dfrac{1}{41}+\dfrac{1}{43}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{49}\right)\ne0\)
\(\Rightarrow100-x=0\)
\(\Rightarrow x=100\)
Vậy \(S=\left\{100\right\}\)
b, \(6x^2-5x+3=2x-3x\left(3-2x\right)\)
\(\Leftrightarrow6x^2-5x+3=2x-9x+6x^2\)
\(\Leftrightarrow6x^2-5x+3=-7x+6x^2\)
\(\Leftrightarrow6x^2-5x+3+7x-6x^2=0\)
\(\Leftrightarrow2x+3=0\)
\(\Leftrightarrow2x=-3\)
\(\Leftrightarrow x=\dfrac{-3}{2}\)
Vậy \(S=\left\{\dfrac{-3}{2}\right\}\)
Bài 2 : Phân tích đa thức thành nhân tử
a) \(8x^2-2\)
\(=2\left(4x^2-1\right)\)
\(=2.\left(2x-1\right)\left(2x+1\right)\)
b) \(x^2-6x-y^2+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-3+y\right)\left(x-3-y\right)\)
1. Tính giá trị biểu thức :
\(Q=x^2-10x+1025\)
\(Q=\left(x^2-2.x.5+25\right)+1000\)
\(Q=\left(x-5\right)^2+1000\)
Thay x=1005 vào biểu thức trên ta có :
\(Q=\left(1005-5\right)^2+1000\)
\(Q=1000000+1000\)
\(Q=1001000\)
2.a)\(\dfrac{3\text{x}-2}{2}\)=\(\dfrac{1-2\text{x}}{3}\)
<=>\(\dfrac{9\text{x}-6}{6}\)=\(\dfrac{2-4\text{x}}{6}\)
<=>9x-6=2-4x
<=>9x+4x=2+6
<=>13x=8
<=>x=\(\dfrac{8}{13}\)
1.a)2(x-0,5)+3=0,25(4x-1)
<=>2x-1+3=x-1phần4
<=>2x-x=-1/4+1-3
<=>x=-3/4
\(\dfrac{x+1}{60}+\dfrac{x+2}{59}=\dfrac{x+3}{58}+\dfrac{x+4}{57}\)
\(\Leftrightarrow\dfrac{x+1}{60}+1+\dfrac{x+2}{59}+1=\dfrac{x+3}{58}+1+\dfrac{x+4}{57}+1\)
\(\Leftrightarrow\dfrac{x+1+60}{60}+\dfrac{x+2+59}{59}=\dfrac{x+3+58}{58}+\dfrac{x+4+57}{57}\)
\(\Leftrightarrow\dfrac{x+61}{60}+\dfrac{x+61}{59}-\dfrac{x+61}{58}-\dfrac{x+61}{57}=0\)
\(\Leftrightarrow\left(x+61\right)\left(\dfrac{1}{60}+\dfrac{1}{59}-\dfrac{1}{58}-\dfrac{1}{57}\right)=0\)
\(\Leftrightarrow x+61=0\)
\(\Leftrightarrow x=-61\)