Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(\dfrac{1}{x-1}-\dfrac{x}{x-1^2}.\dfrac{x^2+1+x}{x+1}\right):\dfrac{1}{x^2-1}\\ =\left(\dfrac{1}{x-1}-\dfrac{x\left(x^2+1+x\right)}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{1}{x^2-1}\\ =\left(\dfrac{1\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{x^3+x+x^2}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{1}{x^2-1}\)
\(\dfrac{x+1-x^3-x-x^2}{\left(x-1\right)\left(x+1\right)}:\dfrac{1}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{\left(x+1-x^3-x-x^2\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=1-x^3-x^2\)
b,
thay x=\(\dfrac{1}{2}\) vào bt M ta được:
\(1-\left(\dfrac{1}{2}\right)^3-\left(\dfrac{1}{2}\right)^2=\dfrac{5}{8}\)
a, ĐKXĐ: x≠±3
A=\(\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{3-x}{x+3}.\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{3-x}{x-3}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{9-x^2}{x^2-9}+\dfrac{x^2-3x}{x^2-9}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{-3}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\dfrac{-1}{x^2}\)
b, Thay x=\(-\dfrac{1}{2}\) (TMĐKXĐ) vào A ta có:
\(\dfrac{-1}{\left(-\dfrac{1}{2}\right)^2}\)=-4
c, A<0 ⇔ \(\dfrac{-1}{x^2}< 0\) ⇔ x2>0 (Đúng với mọi x)
Vậy để A<0 thì x đúng với mọi giá trị (trừ ±3)
1)trước khi rút gọn bạn cần tìm điều kiện để có phân thức này như
+)Điều kiện: \(\left\{{}\begin{matrix}x-1\ne0\\x^2-1\ne\\x+1\ne0\end{matrix}\right.0}\)
\(\Rightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
rồi bạn rút gọn
2) với \(x=1\dfrac{1}{3}=\dfrac{4}{3}\) khi đó bạn thay x vào biểu thức A thì tìm đc giá trị
3) bạn tự làm đc :))
(\(\dfrac{x+1}{x-1}\)-- \(\dfrac{x^2+2x+9}{x^2-1}\)).\(\dfrac{x+1}{5}\)=(\(\dfrac{\left(x+1\right)^2}{x^2-1}\)--\(\dfrac{x^2+2x+9}{x^2-1}\)):\(\dfrac{x+1}{5}\)
=\(\dfrac{-8}{x^2-1}\):\(\dfrac{x+1}{5}\)=\(\dfrac{-8}{5\left(x-1\right)}\)
Cố gắng lên bạn nhé!
a, ĐKXĐ: x≠±2
A=\(\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right)\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
A=\(\left(\dfrac{x}{x^2-4}-\dfrac{2x+4}{x^2-4}+\dfrac{x-2}{x^2-4}\right)\left(\dfrac{x^2+2x}{x+2}-\dfrac{2x+4}{x+2}+\dfrac{10-x^2}{x+2}\right)\)
A=\(\left(\dfrac{-6}{x^2-4}\right)\left(\dfrac{6}{x+2}\right)\)
A=\(\dfrac{-36}{\left(x-2\right)\left(x+2\right)^2}\)
b, |x|=\(\dfrac{1}{2}\)
TH1z: x≥0 ⇔ x=\(\dfrac{1}{2}\) (TMĐKXĐ)
TH2: x<0 ⇔ x=\(\dfrac{-1}{2}\) (TMĐXĐ)
Thay \(\dfrac{1}{2}\), \(\dfrac{-1}{2}\) vào A ta có:
\(\dfrac{-36}{\left(\dfrac{1}{2}-2\right)\left(\dfrac{1}{2}+2\right)^2}\)=\(\dfrac{96}{25}\)
\(\dfrac{-36}{\left(\dfrac{-1}{2}-2\right)\left(\dfrac{-1}{2}+2\right)^2}\)=\(\dfrac{32}{5}\)
c, A<0 ⇔ \(\dfrac{-36}{\left(x-2\right)\left(x+2\right)^2}\) ⇔ (x-2)(x+2)2 < 0
⇔ {x-2>0 ⇔ {x>2
[ [
{x+2<0 {x<2
⇔ {x-2<0 ⇔ {x<2
[ [
{x+2>0 {x>2
⇔ x<2
Vậy x<2 (trừ -2)
a) ĐKXĐ: \(x\ne\pm2\)
b) \(A=\left(\dfrac{1}{x-2}-\dfrac{1}{x+2}\right)\cdot\dfrac{x^2-4x+4}{4}\)
\(=\dfrac{x+2-x+2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{\left(x-2\right)^2}{4}\)
\(=\dfrac{4\left(x-2\right)^2}{4\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x-2}{x+2}\)
c) Với \(x=4\) thoả mãn điều kiện \(x\ne\pm2\), nên thay \(x=4\) vào A, ta có:
\(A=\dfrac{4-2}{4+2}=\dfrac{2}{6}=\dfrac{1}{3}\)
a) A xác định \(\Leftrightarrow\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)
b) \(A=\left(\dfrac{1}{x-2}-\dfrac{1}{x+2}\right)\cdot\dfrac{x^2-4x+4}{4}\)
\(A=\dfrac{x+2-x+2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{\left(x-2\right)^2}{4}\)
\(A=\dfrac{4\cdot\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)\cdot4}\)
\(A=\dfrac{x-2}{x+2}\)
c) Thay x = 4 ( thỏa mãn ĐKXĐ ), ta có :
\(A=\dfrac{4-2}{4+2}=\dfrac{2}{5}=\dfrac{1}{3}\)
Bài này cần có công thức:
Ta có:\(x+\frac{1}{x}=3=>x^2+\frac{1}{x^2}=\left(x+\frac{1}{x}\right)^2-2=9-2=7\)
Lại có: \(x^5+\frac{1}{x^5}=\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)
=\(7\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}-1\right)-3=7.3.6-3=123\)
Vậy \(x^5+\frac{1}{x^5}=123\)
con này không nhầm có lời giửi rồi!
\(\left(x+\frac{1}{x}\right)=3\Rightarrow x^2+\frac{1}{x^2}=7\Rightarrow x^4+\frac{1}{x^4}=47\)
\(3.7=\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}\right)=\left(x^3+\frac{1}{x^3}\right)+\left(x+\frac{1}{x}\right)\)
\(\Rightarrow\left(x^3+\frac{1}{x^3}\right)=3.7-3=3.6\)
\(3.47=\left(x+\frac{1}{x}\right)\left(x^4+\frac{1}{x^4}\right)=\left(x^5+\frac{1}{x^5}\right)+x^3+\frac{1}{x^3}\\ \)
\(x^5+\frac{1}{x^5}=3.47-3.6=3\left(47-6\right)=3.41=123\)