Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 3 biểu thức giá trị tuyệt đối trên luôn > hoặc = 0 ( ghi vậy cho nhanh nhé)
Mà 3 biểu thức đó cộng lại =0 nên x+17/3=y-2000/1999=z-2005=0
hay x=-17/3 y=2000/1999 z=2005
=> x+z=-17/3+2005= Bạn tự tính nhé mình ko cầm máy tính
\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}-x=3\sqrt{3}\\\dfrac{2}{3}-x=-3\sqrt{3}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2-9\sqrt{3}}{3}\\x=\dfrac{2+9\sqrt{3}}{3}\end{matrix}\right.\)
`@` `\text {Ans}`
`\downarrow`
`a)`
`-9/34*17/4`
`=`\(\dfrac{-9}{17\cdot2}\cdot\dfrac{17}{4}\)
`=`\(-\dfrac{9}{2}\cdot\dfrac{1}{4}\)
`=`\(-\dfrac{9}{8}\)
`b)`
\(\dfrac{17}{15}\div\dfrac{4}{3}\)
`=`\(\dfrac{17}{15}\cdot\dfrac{3}{4}\)
`=`\(\dfrac{17}{3\cdot5}\cdot\dfrac{3}{4}\)
`=`\(\dfrac{17}{5}\cdot\dfrac{1}{4}\)
`=`\(\dfrac{17}{20}\)
`c)`
\(4\dfrac{1}{5}\div\left(-2\dfrac{4}{5}\right)\)
`=`\(4\dfrac{1}{5}\cdot\left(-\dfrac{5}{14}\right)\)
`=`\(\dfrac{21}{5}\cdot\left(-\dfrac{5}{14}\right)\)
`=`\(-\dfrac{21}{14}=-\dfrac{3}{2}\)
a) \(\dfrac{-9}{34}\cdot\dfrac{17}{4}\)
\(=\dfrac{-9\cdot17}{34\cdot4}\)
\(=-\dfrac{153}{136}\)
\(=\dfrac{9}{8}\)
b) \(\dfrac{17}{15}:\dfrac{4}{3}\)
\(=\dfrac{17}{15}\cdot\dfrac{3}{4}\)
\(=\dfrac{17\cdot3}{15\cdot4}\)
\(=\dfrac{51}{60}=\dfrac{17}{20}\)
c) \(4\dfrac{1}{5}:\left(-2\dfrac{4}{5}\right)\)
\(=\dfrac{21}{5}:-\dfrac{14}{5}\)
\(=\dfrac{21}{5}\cdot-\dfrac{5}{14}\)
\(=\dfrac{21\cdot-5}{5\cdot14}\)
\(=-\dfrac{105}{70}=\dfrac{3}{2}\)
b \(\Leftrightarrow3^x\cdot9+4\cdot3^x\cdot3+3^x\cdot\dfrac{1}{3}=6^6\)
\(\Leftrightarrow3^x=6^6:\left(9+4\cdot3+\dfrac{1}{3}\right)=2187\)
hay x=7
c: \(\Leftrightarrow2^{x-1}=24-16+3-3=8\)
=>x-1=3
hay x=4
d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{-3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{-2x+7y-3z}{6+28-15}=\dfrac{171}{19}=9\)
Do đó: x=-27; y=36; z=45
a/
Theo đề,ta có:
+/ \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\left(1\right)\)
+/\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\)\(\left(2\right)\)
Từ (1) và (2), ta có:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{28}{-19}\)
Do đó:
+/ \(\dfrac{x}{8}=\dfrac{28}{-19}\Rightarrow x=-\dfrac{224}{19}\)
+/\(\dfrac{y}{12}=\dfrac{28}{-19}\Rightarrow y=-\dfrac{336}{19}\)
+/\(\dfrac{z}{15}=\dfrac{28}{-19}\Rightarrow z=-\dfrac{420}{19}\)
Vậy: + \(x=-\dfrac{224}{19}\)
+ \(y=-\dfrac{336}{19}\)
+ \(z=-\dfrac{420}{19}\)
a,x2=y3,y4=z5x2=y3,y4=z5và x-y-z=28
Có \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\)
\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\)
=>\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng tính chất DTSBN có:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)=\(\dfrac{x-y-z}{8-12-15}=\dfrac{-28}{19}\)
=> x=\(\dfrac{-224}{19}\)
y=\(\dfrac{-336}{19}\)
z=\(\dfrac{-420}{19}\)
a. \(\dfrac{-18}{91}\) và \(\dfrac{-23}{114}\) ( mẫu chung : 10374 )
Quy đồng : \(\dfrac{-18}{91}=\dfrac{-2052}{10374}\) ; \(\dfrac{-23}{114}=\dfrac{-2093}{10374}\)
Vì \(\dfrac{-2052}{10374}>\dfrac{-2093}{10374}\Rightarrow\dfrac{-18}{91}>\dfrac{-23}{114}\)
Vậy...
b. \(\dfrac{-22}{35}\) và \(\dfrac{-103}{177}\) ( MC = 6195 )
Quy đồng : \(\dfrac{-22}{35}=\dfrac{-3894}{6195};\dfrac{-103}{177}=\dfrac{-3605}{6195}\)
Vì \(\dfrac{-3894}{6195}< \dfrac{-3605}{6195}\Rightarrow\dfrac{-22}{35}< \dfrac{-103}{177}\)
Vậy...
c. \(\dfrac{-22}{45}\) và \(\dfrac{-17}{33}\)(MC=495)
Quy đồng : \(\dfrac{-22}{45}=\dfrac{-242}{495};\dfrac{-17}{33}=\dfrac{-255}{495}\)
Vì \(\dfrac{-242}{495}>\dfrac{-255}{495}\Rightarrow\dfrac{-22}{45}>\dfrac{-17}{33}\)
Vậy
\(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}=\dfrac{x-5}{2004}+\dfrac{x-4}{2005}+\dfrac{x-3}{2006}\)
\(\Leftrightarrow\left(\dfrac{x-8}{2001}+1\right)+\left(\dfrac{x-7}{2002}+1\right)+\left(\dfrac{x-6}{2003}+1\right)=\left(\dfrac{x-5}{2004}+1\right)+\left(\dfrac{x-4}{2005}+1\right)+\left(\dfrac{x-3}{2006}+1\right)\)
\(\Leftrightarrow\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}-\dfrac{x-2009}{2004}-\dfrac{x-2009}{2005}-\dfrac{x-2009}{2006}=0\)
\(\Leftrightarrow\left(x-2009\right).\left(\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}-\dfrac{1}{2006}\right)=0\)
\(\text{Mà}:\left(\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}-\dfrac{1}{2006}\right)\ne0\)
\(\Rightarrow x-2009=0\Rightarrow x=2009\)
\(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}=\dfrac{x-5}{2004}+\dfrac{x-4}{4}+\dfrac{x-5}{2006}\)
\(\Leftrightarrow\left(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}\right)-3=\left(\dfrac{x-5}{2004}+\dfrac{x-4}{4}+\dfrac{x-5}{2006}\right)-3\)
\(\Leftrightarrow\left(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}\right)-\left(1+1+1\right)=\left(\dfrac{x-5}{2004}+\dfrac{x-4}{2005}+\dfrac{x-5}{2006}\right)-\left(1+1+1\right)\)
\(\Leftrightarrow\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}-1-1-1=\dfrac{x-5}{2004}+\dfrac{x-4}{2005}+\dfrac{x-5}{2006}-1-1-1\)
\(\Leftrightarrow\left(\dfrac{x-8}{2001}-1\right)+\left(\dfrac{x-7}{2002}-1\right)+\left(\dfrac{x-6}{2003}-1\right)=\left(\dfrac{x-5}{2004}-1\right)+\left(\dfrac{x-4}{2005}-1\right)+\left(\dfrac{x-5}{2006}-1\right)\)
\(\)\(\Leftrightarrow\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}=\dfrac{x-2009}{2004}+\dfrac{x-2009}{2006}+\dfrac{x-2009}{2006}\)
\(\Leftrightarrow\left(\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}\right)-\left(\dfrac{x-2009}{2004}+\dfrac{x-2009}{2006}+\dfrac{x-2009}{2006}\right)=0\)
\(\Leftrightarrow\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}-\dfrac{x-2009}{2004}-\dfrac{x-2009}{2006}-\dfrac{x-2009}{2006}=0\)
\(\Leftrightarrow\left(x-2009\right)\left(\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}-\dfrac{1}{2006}\right)=0\)
\(\Leftrightarrow x-2009=0\)
\(\Leftrightarrow x=2009\)
Vậy \(x=2009\)
Có gì sai sai đấy ạ, cho xin hỏi là có chép sai đề ko ạ?
\(\dfrac{x-2000}{22}\) + \(\dfrac{x-2005}{17}\) + \(\dfrac{x}{674}\) = 5
\(\dfrac{x-2000}{22}\) + \(\dfrac{x-2005}{17}\) + \(\dfrac{x}{674}\) - 5 = 0
(\(\dfrac{x-2000}{22}\) - 1) + (\(\dfrac{x-2005}{17}\) - 1) + (\(\dfrac{x}{674}\) - 3) = 0
\(\dfrac{x-2022}{22}\) + \(\dfrac{x-2022}{17}\) + \(\dfrac{x-2022}{674}\) = 0
(\(x\) - 2022).(\(\dfrac{1}{22}\) + \(\dfrac{1}{17}\) + \(\dfrac{1}{647}\)) = 0
Vì \(\dfrac{1}{22}\) + \(\dfrac{1}{17}\) + \(\dfrac{1}{647}\) > 0
Nên \(x\) - 2022 = 0
\(x\) = 2022
Vậy \(x\) = 2022