Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\)
➩\(\dfrac{a}{c}=\dfrac{b}{d}\)➩\(\dfrac{2008a}{2009c}=\dfrac{2009b}{2010d}=\dfrac{2008a+2009b}{2009c+2010d}=\dfrac{2008a-2009b}{2009c-2010}\)
➩\(\dfrac{2008a-2009b}{2009c+2009c}=\dfrac{2008c-2009d}{2009a+2010d}\left(đpcm\right)\)
* đpcm : điều phải chứng minh
Chúc bạn học tốt !!!
Nếu thấy đúng thì tick cho mình nhé !!!
Bài 2:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a+b+c}{2+4+3}=\dfrac{180}{9}=20\)
=>a=20; b=80; c=60
Bài 3:
a: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\left(\dfrac{b}{d}\right)^2\)
Do đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2-b^2}{c^2-d^2}\)
c: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)
\(\left(\dfrac{a-b}{c-d}\right)^2=\left(\dfrac{bk-b}{dk-d}\right)^2=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2b+2c+2d+2a}=\frac{a+b+c+d}{2(a+b+c+d)}=\frac{1}{2}\)
\(\Rightarrow \frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=1\Leftrightarrow a=b=c=d\)
Do đó:
\(A=\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}\)
\(\Leftrightarrow A=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2\)
Vậy \(A=2\)
Ta có: \(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2\left(a+b+c+d\right)}=\dfrac{1}{2}\)
\(\Rightarrow a=b;b=c;c=d;d=a\)
\(A=\dfrac{2011a-2010b}{c+d}+\dfrac{2011b-2010c}{a+d}+\dfrac{2011c-2010d}{a+b}+\dfrac{2011d-2010a}{b+c}\)
\(A=\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}\)
\(A=\dfrac{c+c+c+c}{c+c}=2\)
Vậy ....................
\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2\left(a+b+c+d\right)}=\dfrac{1}{2}\)
( theo tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\cdot2b\\b=\dfrac{1}{2}\cdot2c\\c=\dfrac{1}{2}\cdot2d\\d=\dfrac{1}{2}\cdot2a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\Rightarrow a=b=c=d\)
\(\Rightarrow P=\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}=2\)
cho tỉ lệ thức ab = cd
chứng minh rằng (2008a+2009c)(b+d)=(a+c)(2008+2009d)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có :
\(\frac{2008a+2009c}{a+c}=\frac{2008bk+2009dk}{bk+dk}=\frac{k\left(2008b+2009d\right)}{k\left(b+d\right)}=\frac{2008b+2009d}{b+d}\)
\(\Rightarrow\frac{2008a+2009c}{a+c}=\frac{2008b+2009d}{b+d}\Rightarrow\left(2008a+2009c\right)\left(b+d\right)=\left(a+c\right)\left(2008b+2009d\right)\)
=> ĐPCM
\(\dfrac{2010c-2011b}{2009}=\dfrac{2011a-2009c}{2010}=\dfrac{2009b-2010a}{2011}\)
Đặt: \(\left\{{}\begin{matrix}2009=x\\2010=y\\2011=z\end{matrix}\right.\) Ta có:
\(\dfrac{cy-bz}{x}=\dfrac{az-cx}{y}=\dfrac{bx-ay}{z}\)
\(\Leftrightarrow\dfrac{cxy-bxz}{x^2}=\dfrac{ayz-cxy}{y^2}=\dfrac{bxz-ayz}{z^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{cxy-bxz}{x^2}=\dfrac{ayz-cxy}{y^2}=\dfrac{bxz-ayz}{z^2}=\dfrac{cxy-bxz+ayz-cxy+bxz-ayz}{x^2+y^2+z^2}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}cy=bz\Leftrightarrow\dfrac{b}{y}=\dfrac{c}{z}\\az=cx\Leftrightarrow\dfrac{a}{x}=\dfrac{c}{z}\\bx=ay\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}\end{matrix}\right.\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\Leftrightarrow\dfrac{a}{2009}=\dfrac{b}{2010}=\dfrac{c}{2011}\left(đpcm\right)\)
ta có :\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2\left(a+b+c+d\right)}=\dfrac{1}{2}\)
suy ra:\(a=b;b=c;c=d;d=a\)
\(A=\dfrac{2011a-2010b}{c+d}+\dfrac{2011b-2010c}{a+d}+\dfrac{2011c-2010d}{a+b}+\dfrac{2011d-2010a}{b+c}\)
\(A=\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}\)
\(A=\dfrac{c+c+c+c}{c+c}=2\)
vậy giá trị của A là 2