Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có :
\(\frac{2009a-b}{a}=\frac{2009.bk-b}{bk}=\frac{b.\left(2009k-1\right)}{bk}=\frac{2009k-1}{k}\left(1\right)\)
\(\frac{2009c-d}{c}=\frac{2009dk-d}{dk}=\frac{d.\left(2009k-1\right)}{dk}=\frac{2009k-1}{k}\left(2\right)\)
\(\)Từ ( 1 ) và ( 2 ) => \(\frac{2009a-b}{a}=\frac{2009c-d}{c}\)
=> đpcm
Nhớ cho mk nha
\(\frac{2009a}{a}-\frac{b}{a}=\frac{2009c}{c}-\frac{d}{c}\)
=> \(2009-\frac{b}{d}=2009-\frac{d}{c}\)
Hay: \(2009-\frac{a}{b}=2009-\frac{c}{d}\)
Mà: \(\frac{a}{b}=\frac{c}{d}\)
=>\(\frac{2009a-b}{a}=\frac{2009c-d}{c}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a+b}{c+d}\right)^2\left(1\right)\)
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\left(đpcm\right)\)
đặt a/b = c/d = k (k thuộc N)
=> a = bk
c = dk
thay a và c vào 2 phân số cần so sánh thì = nhau
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\). Ta có:
\(\frac{\left(a-b\right)^3}{\left(c-d\right)^3}=\frac{\left(bk-b\right)^3}{\left(dk-d\right)^3}=\frac{b^3\left(k-1\right)^3}{d^3\left(k-1\right)^3}=\frac{b^3}{d^3}\)
\(\frac{3a^2+2b^2}{3c^2+2d^2}=\frac{3\left(bk\right)^2+2b^2}{3\left(dk\right)^2+2d^2}=\frac{3b^2k^2+2b^2}{3d^2k^2+2d^2}=\frac{b^2\left(3k^2+2\right)}{d^2\left(3k^2+2\right)}=\frac{b^2}{d^2}\)
Đến đây nhìn có vẻ đề sai
\(\frac{a}{b}=\frac{c}{d}=k\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)ta có:
\(\frac{\left(a-b\right)^3}{\left(c-d\right)^3}=\frac{\left(bk-b\right)^3}{\left(dk-d\right)^3}=\frac{\left[b\left(k-1\right)\right]^3}{\left[d\left(k-1\right)\right]^3}=\frac{b^3}{d^3}\)
\(\frac{2b^2+3a^2}{2d^2+3c^2}=\frac{4.b^2+9.k^2.b^2}{4.d^2+9.d^2.k^2}=\frac{b^2\left(4+k^2.9\right)}{d^2\left(4+9.k^2\right)}=\frac{b^2}{d^2}\)
\(Taco:\frac{b^3}{d^3}=\frac{b^2}{d^2}\Leftrightarrow b=d\)
cho tỉ lệ thức ab = cd
chứng minh rằng (2008a+2009c)(b+d)=(a+c)(2008+2009d)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có :
\(\frac{2008a+2009c}{a+c}=\frac{2008bk+2009dk}{bk+dk}=\frac{k\left(2008b+2009d\right)}{k\left(b+d\right)}=\frac{2008b+2009d}{b+d}\)
\(\Rightarrow\frac{2008a+2009c}{a+c}=\frac{2008b+2009d}{b+d}\Rightarrow\left(2008a+2009c\right)\left(b+d\right)=\left(a+c\right)\left(2008b+2009d\right)\)
=> ĐPCM