K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

a) Xét tam giác vuông BAC và tam giác vuông DAC có:

Cạnh AC chung

BA = DA

\(\Rightarrow\Delta BAC=\Delta DAC\)  (Hai cạnh góc vuông)

\(\Rightarrow\widehat{BCA}=\widehat{DCA}\)

\(\Rightarrow\) CA là tia phân giác góc \(\widehat{BCD}.\)

b) Xét tam giác vuông IFC và tam giác vuông IEC có:

Cạnh IC chung

\(\widehat{FCI}=\widehat{ECI}\)

\(\Rightarrow\Delta IFC=\Delta IEC\)  (Cạnh huyền-góc nhọn)

\(\Rightarrow CE=CF\)

Vậy tam giác CEF cân tại C.

Gọi giao điểm của IC và EF là J. Ta dễ thấy \(\Delta JFC=\Delta JEC\left(c-g-c\right)\Rightarrow\widehat{FJC}=\widehat{EJC}=90^o\)

Vậy thì EF//BD hay BFED là hình thang.

Lại có \(\Delta BAC=\Delta DAC\Rightarrow\widehat{FBD}=\widehat{EDB}\)

Vậy nên BFED là hình thang cân.

c) Ta có ngay IE = IF, mà IF là đường vuông góc nên luôn nhỏ hơn hoặc bằng đường xiên IB.

Vậy nên \(IE\le IB\)

17 tháng 7 2018

a) Xét tam giác vuông BKC và tam giác vuông CHB có:

\(\widehat{BKC}=\widehat{CHB}=90^o\)

Cạnh BC chung

\(\widehat{KBC}=\widehat{HCB}\)  (Do tam giác ABC cân)

\(\Rightarrow\Delta BKC=\Delta CHB\)  (Cạnh huyền - góc nhọn)

\(\Rightarrow BK=CH\)  (Hai cạnh tương ứng)

b) Do tam giác ABC cân tại A nên AB = AC. Lại có theo câu a thì BK = CH.

Suy ra AK = AB - BK = AC - CH = AH

Vậy AK = AH hay tam giác AKH cân tại A.

c) Do tam giác ABC cân tại A nên \(\widehat{ACB}=\frac{180^o-\widehat{A}}{2}\)

Tam giác AKH cũng cân tại A nên \(\widehat{AHK}=\frac{180^o-\widehat{A}}{2}\)

Suy ra \(\widehat{ACB}=\widehat{AHK}\). Chúng lại ở vị trí đồng vị nên KH // BC.

Vậy nên KHCB là hình thang.

d) Xét tam giác KBN và tma giác HCM có :

KB = HC (cma)

BN = CM (gt)

\(\widehat{KBN}=\widehat{HCM}\)  (gt)

\(\Rightarrow\Delta KBN=\Delta HCM\left(c-g-c\right)\)

\(\Rightarrow\widehat{KNB}=\widehat{HMC}=90^o\)

Vậy \(KN\perp BC.\)

17 tháng 7 2018

em cảm ơn ạh

12 tháng 12 2016

AI GIÚP MÌNH VỚI! khocroi

15 tháng 12 2016

MÌNH NHẦM

CÂU a LÀ CHỨNG MINH TAM GIÁC EIB=AIE

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau