\(\Delta\)ABC, phân giác của góc B và góc C cắt nhau ở I. Vẽ ID\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2016

Kí hiệu tam giác viết là t/g nhé

a) BI là phân giác ABC nên ABI = CBI

Xét t/g BID vuông tại D và t/g BIF vuông tại F có:

BI là cạnh chung

DBI = FBI (cmt)

Do đó, t/g BID = t/g BIF ( cạnh góc vuông và góc nhọn kề) (đpcm)

b) t/g BID = t/g BIF (câu a) => ID = IF (2 cạnh tương ứng) (1)

C/m tương tự câu a ta cũng có: t/g ADI = t/g AEI ( cạnh góc vuông và góc nhọn kề)

=> ID = IE (2 cạnh tương ứng)

Từ (1) và (2) => ID = IE = IF (đpcm)

 

10 tháng 12 2016

ban tu ve hinh nhengaingungngaingung

a) Xet tam giac BID va tam giac BIF co:

BI:canh chung

goc DBI=goc IBF(vi tia BI la tia phan giac cua goc DBF)

goc BDI=goc BFI(=90do)

Vay tam giac BID=tam giac BIF(canh huyen, goc nhon)

b) Vi tam giac BID=tam giac BIF(cau a)

Nen ID=IF(2 canh tuong ung) (1)

Xet tam giac AID va tam giac AIE co:

AI:canh chung

goc DAI=goc EAI(vi tia AI la tia phan giac cua goc DAE)

goc ADI=goc AEI(=90do)

Nen tam giac AID=tam giac AIE(canh huyen,goc nhon)

Suy ra:ID=IE(2 canh ung) (2)

Tu (1), (2)\(\Rightarrow\) IF=ID=IE

Chuc ban ngay cang hoc gioi len nheokok

Hen gap lai ban vao dip khac nheok
 

20 tháng 4 2017

Hai tam giác vuông BID và BIE có:

BI là cạnh chung

B1=B2(gt)

nên ∆BID=∆BIE.

(cạnh huyền - góc nhọn)

Suy ra ID=IE (1)

Tương tự ∆CIE=CIF(cạnh huyền góc nhọn).

Suy ra: IE =IF (2)

Từ (1)(2) suy ra: ID=IE=IF.



8 tháng 11 2018

Hai tam giác vuông BID và BIE có:

BI là cạnh chung

B1=B2(gt)

nên ∆BID=∆BIE.

(cạnh huyền - góc nhọn)

Suy ra ID=IE (1)

Tương tự ∆CIE=CIF(cạnh huyền góc nhọn).

Suy ra: IE =IF (2)

Từ (1)(2) suy ra: ID=IE=IF.

20 tháng 1 2018

PMNIEFKH

a) Xét \(\Delta PIM;\Delta PIN\) có :

\(PM=PN\) (tam giác MNP cân tại P)

\(\widehat{MPI}=\widehat{NPI}\) (PI là tia phân giác của \(\widehat{MPN}\) )

\(PI:chung\)

=> \(\Delta PIM=\Delta PIN\left(c.g.c\right)\)

*Cách khác :

Xét \(\Delta PIM;\Delta PIN\) có :

\(\widehat{PMI}=\widehat{PNI}\) (tam giác MNP cân tại P)

\(PM=PN\)(tam giác MNP cân tại P)

\(\widehat{MPI}=\widehat{NPI}\) (PI là tia phân giác của góc MPN)

=> \(\Delta PIM=\Delta PIN\left(g.c.g\right)\)

b) Xét \(\Delta PEI;\Delta PFI\) có :

\(\widehat{PEI}=\widehat{PFI}\left(=90^{^O}\right)\)

\(PI:Chung\)

\(\widehat{EPI}=\widehat{FPI}\left(cmt\right)\)

=> \(\Delta PEI=\Delta PFI\) (cạnh huyền - góc nhọn)

=> \(IE=IF\) (2 cạnh tương ứng)

c) Ta chứng minh được \(\Delta PIK=\Delta PIH\left(g.c.g\right)\)

Suy ra : \(PK=PH\) (2 cạnh tương ứng)

Xét \(\Delta PHK\) có :

\(PK=PH\left(cmt\right)\)

=> \(\Delta PHK\) cân tại P (đpcm)

d) Xét \(\Delta PEF\) cân tại E có :

\(\widehat{PEF}=\widehat{PFE}=\dfrac{180^o-\widehat{P}}{2}\left(1\right)\)

Xét \(\Delta PKH\) cân tại P (cmt) có :

\(\widehat{PKH}=\widehat{PHK}=\dfrac{180^o-\widehat{P}}{2}\left(2\right)\)

Từ (1) và (2) => \(\widehat{PEF}=\widehat{PKH}\left(=\dfrac{180^o-\widehat{P}}{2}\right)\)

Mà thấy : 2 góc này đều ở vị trí đồng vị

=> \(\text{EF // HK (đpcm)}\)

1 tháng 8 2018

a) Xét tam giác vuông BAC và tam giác vuông DAC có:

Cạnh AC chung

BA = DA

\(\Rightarrow\Delta BAC=\Delta DAC\)  (Hai cạnh góc vuông)

\(\Rightarrow\widehat{BCA}=\widehat{DCA}\)

\(\Rightarrow\) CA là tia phân giác góc \(\widehat{BCD}.\)

b) Xét tam giác vuông IFC và tam giác vuông IEC có:

Cạnh IC chung

\(\widehat{FCI}=\widehat{ECI}\)

\(\Rightarrow\Delta IFC=\Delta IEC\)  (Cạnh huyền-góc nhọn)

\(\Rightarrow CE=CF\)

Vậy tam giác CEF cân tại C.

Gọi giao điểm của IC và EF là J. Ta dễ thấy \(\Delta JFC=\Delta JEC\left(c-g-c\right)\Rightarrow\widehat{FJC}=\widehat{EJC}=90^o\)

Vậy thì EF//BD hay BFED là hình thang.

Lại có \(\Delta BAC=\Delta DAC\Rightarrow\widehat{FBD}=\widehat{EDB}\)

Vậy nên BFED là hình thang cân.

c) Ta có ngay IE = IF, mà IF là đường vuông góc nên luôn nhỏ hơn hoặc bằng đường xiên IB.

Vậy nên \(IE\le IB\)

13 tháng 8 2015

A C B D E I F

+) Xét tam giác vuông FIC và EIC có Chung cạnh IC; góc FCI = ICE ( do CI  là p/g của góc ACB)

=> tam giác FIC = EIC ( cạnh huyền - góc nhọn)

=> IF = IE      (1)

+) Xét tam giácvuông IEB và tam giác vuông IDB có: chung cạnh IB; góc IBE = IBD ( do BI là p/g của góc ABC)

=> tam giác IEB = IDB ( cạnh huyền - góc nhọn)

=> IE = ID     (2)

Từ (1)(2) => IE = ID = IF

19 tháng 1 2019

Cho tam giác ABC,Tia phân giác của góc B và góc C cắt nhau tại I,Qua I kẻ đường thẳng song song với BC cắt AB tại D và AC tại E,Chứng minh DE = BD + CE,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

Kham khỏa nhé

19 tháng 1 2019

bạn kham khỏa nhé

Cho tam giác ABC,tia phân giác của các góc B và C cắt nhau ở I,Qua I kẻ đường thẳng song song với BC,Tìm các hình thang có trong hình vẽ,Chứng minh tam giác BDI cân ở D,Chứng minh tam giác IEC cân ở E,So sánhDE và tổng BD + CE,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8