K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2019

tự vẽ hình

a) Xét tam giác ABE và tam giác ACD, ta có:

Góc BAE= góc DAC(hay góc A là góc chung)

AD=AC(gt)

AD=AE(gt)

Vậy tam giác ABE = tam giác ACD (c-g-c)

=> BE=CD ( cặp cạnh t/ứng)

=> góc ABE=góc ACD (cặp góc t/ứng) hay góc ABK=góc ACK

 b) Vì AB=AC, AD=AE => BD=CE( vì AD+BD=AB;AE+EC=AC)

tam giác DBK có: góc D+góc B+góc K=180 độ

tam giác KCE có: góc K+góc C+góc E=180 độ

mà Góc B= góc C(cmt) và Góc K1=Góc K1(đối đỉnh)---bạn tự kí hiệu nha :")

=> góc D=góc E

Xét tam giác BKD và tam giác KCE, ta có:

Góc BDK=góc KEC(cmt)

Góc DBK=góc ECK(cmt)

DB=CE(cmt)

Vậy tam giác BKD = tam giác KCE(g-c-g)

=> DK=EK(cặp cạnh tướng ứng)

c) Xét tam giác ADK và tam giác AEK, ta có:

AD=AE(gt)

DK=KE(cmt)

AK là cạnh chung

Vậy tam giác ADK= tam giác AEK(c-c-c)

=> góc DAK=góc EAK(cặp góc t/ứng) hay góc BAK=góc CAK

=> AK là p/g của góc BAC

d) Góc BAK=góc CAK hay góc BAI=góc CAI

Xét tam giác BAI và tam giác CAI, ta có:

AB=AC(gt)

AI là cạnh chung

Góc BAI=góc CAI (cmt)

Vậy tam giác BAI = tam giác CAI(c-g-c)

=>Góc AIB=góc AIC(cặp góc t/ứng)

mà góc AIB+góc AIC=180 độ => AIB=AIC=90 độ

=> AI vuông góc với BC

4 tháng 11 2016

 

a/ Xét tam giác BCD và tam giác BCE có

-góc B = góc C

-BD = EC

-BC: cạnh chung

=> tam giác BCD = tam giác BCE (cạnh góc cạnh)

=> BE=CD (2 cạnh tương ứng)

b/ Xét tam giác KBD và tam giác KCE có

-Góc BKD = góc CKE (đối đỉnh)

-BD=CE

-KB=KC

=> tam giác KBD = tam giác KCE

5 tháng 11 2016

ở câu a tại sao góc b= góc c vậy bn

12 tháng 12 2016

AI GIÚP MÌNH VỚI! khocroi

15 tháng 12 2016

MÌNH NHẦM

CÂU a LÀ CHỨNG MINH TAM GIÁC EIB=AIE

a: Xét ΔABE và ΔACD có 

AB=AC

\(\widehat{A}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Xét ΔDBC và ΔECB có

DB=EC

BC chung

DC=EB

Do đó: ΔDBC=ΔECB

Xét ΔKBD và ΔKCE có 

\(\widehat{KBD}=\widehat{KCE}\)

BD=CE

\(\widehat{KDB}=\widehat{KEC}\)

Do đó:ΔKBD=ΔKCE

26 tháng 4 2020

a) Xét ΔABE và ΔACD ta có:

AB = AC (GT)

\(\widehat{BAC}\): góc chung

AE = AD (GT)

=> ΔABE = ΔACD (c - g - c)

=> BE = CD (2 cạnh tương ứng)

b) Có: ΔABE = ΔACD (câu a)

\(\Rightarrow\widehat{AEB}=\widehat{ADC}\) (2 góc tương ứng)

Có: \(\left\{{}\begin{matrix}\widehat{AEB}+\widehat{KEC}=180^0\\\widehat{ADC}+\widehat{KDB}=180^0\end{matrix}\right.\) (kề bù)

Mà: \(\widehat{AEB}=\widehat{ADC}\left(cmt\right)\)

\(\Rightarrow\widehat{KEC}=\widehat{KDB}\)

Có: \(\left\{{}\begin{matrix}AD+BD=AB\\AE+EC=AC\end{matrix}\right.\)

Mà: \(\left\{{}\begin{matrix}AD=AE\left(GT\right)\\AB=AC\left(GT\right)\end{matrix}\right.\)

=> BD = EC

Có: ΔABE = ΔACD (câu a)

\(\Rightarrow\widehat{ABE}=\widehat{ACD}\) (2 góc tương ứng)

Hay: \(\widehat{DBK}=\widehat{ECK}\)

Xét ΔDBK và ΔECK ta có:

\(\widehat{DBK}=\widehat{ECK}\left(cmt\right)\)

BD = EC (cmt)

\(\widehat{KEC}=\widehat{KDB}\left(cmt\right)\)

=> ΔDBK = ΔECK (g - c - g)

c) Có: ΔDBK = ΔECK (câu b)

=> DK = EK (2 cạnh tương ứng)

Xét ΔADK và ΔAEK ta có:

DK = EK (cmt)

AD = AE (GT)

AK: cạnh chung

=> ΔADK = ΔAEK (c - c - c)

\(\Rightarrow\widehat{AKD}=\widehat{AKE}\) (2 góc tương ứng)

=> AK là phân giác của góc DAE

Hay: AK là phân giác của góc A

d) Có: AK là phân giác của góc A (cmt)

\(\Rightarrow\widehat{BAK}=\widehat{CAK}\) (2 góc tương ứng)

Hay: \(\widehat{BAI}=\widehat{CAI}\)

Xét ΔABI và ΔACI ta có:

AB = AC (GT)

\(\widehat{BAI}=\widehat{CAI}\left(cmt\right)\)

AI: cạnh chung

=> ΔABI = ΔACI (c - g - c)

\(\Rightarrow\widehat{AIB}=\widehat{AIC}\) (2 góc tương ứng)

Mà 2 góc này lại là 2 góc kề bù nên:

\(\Rightarrow\widehat{AIB}=\widehat{AIC}=180^0:2=90^0\)

=> AI ⊥ BC.

26 tháng 4 2020

Nguyễn Trúc Giang Bạn ưi :v tại s chỗ có AK là pg góc A bạn lại suy ra 2 góc đó t/ứ ạ ? Bạn nên sửa chỗ đóa đi ạ :>

a) ta có tam giác abc là tam giác cân

=> AD=AC

MÀ  BD=CE  (1)

=>AD=AE(2)

Từ 1 và 2 suy ra DE là đường TB 

=> DE=1/2BC

=> DE//BC (đccm)

sửa lại 

=>AB=AC

20 tháng 1 2019

bạn có thể xem ở bạn LÊ YẾN NHI

mình đã trả lời cho bạn đó

17 tháng 12 2019

bạn lên app QuandA hỏi nha, gia sư sẽ cho bạn đáp án chính xác

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:   a) \(\Delta ABK=\Delta BDC\)   b)\(CD\perp BK\)và \(BE\perp CK\)    c) Ba đường thẳng AH, BE, CD đồng quyBài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:

   a) \(\Delta ABK=\Delta BDC\)

   b)\(CD\perp BK\)và \(BE\perp CK\)

    c) Ba đường thẳng AH, BE, CD đồng quy

Bài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao cho \(\widehat{ABC}=3\widehat{ABD}\),trên canh AB lấy diểm E sao cho \(\widehat{ACB}=3\widehat{ACE}\).Gọi F là giao điểm của BD và CE. I là giao điểm các đường phân giác của\(\Delta BFC\).

       a)Tính số đo \(\widehat{BFC}\)

       b)Chứng minh \(\Delta BFE=\Delta BFI\)

       c) Chứng minh IDE là tam giác đều

       d)Gọi Cx là tia đối của tia CB, M là giao điểm của FI và BC. Tia phân giác của \(\widehat{FCx}\)cắt tia BF tại K. Chứng minh MK là tia phân giác của \(\widehat{FMC}\)

      e) MK cắt CF tại điểm N. Chứng minh B, I, N thẳng hàng

0