K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2023

\(x^4+6x^3+x^2=x^2\left(x^2+6x+1\right)\)

\(\left(x+9\right)-\left(x+9\right)4x=\left(x+9\right)\left(1-4x\right)\)

25 tháng 10 2021

\(a,x^2-5x\)

\(=x\left(x-5\right)\)

\(b,5x\left(x+5\right)+4x+20\)

\(=5x\left(x+5\right)+4\left(x+5\right)\)

\(=\left(5x+4\right)\left(x+5\right)\)

\(c,7x\left(2x-1\right)-4x+2\)

\(=7x\left(2x-1\right)-2\left(2x-1\right)\)

\(=\left(7x-2\right)-\left(2x-1\right)\)

25 tháng 10 2021

\(d,x^2-16+2\left(x+4\right)\)

\(=x^2-16+2x+8\)

\(=x\left(x-2\right)-8\) ( Ý này thì k chắc lắm, sai thông cảm :)) ) 

\(e,x^2-10x+9\)

\(=x^2-x-9x+9\)

\(=x\left(x-1\right)-9\left(x-1\right)\)

\(=\left(x-9\right)\left(x-1\right)\)

\(f,\left(2x-1\right)^2-\left(x-3\right)^2=0\) ( mk đoán bài này là tìm x, sai thì bảo mk để mk sửa nhé ) 

\(\Rightarrow\left(2x-1\right)^2=\left(x-3\right)^2\)

\(\Leftrightarrow\pm\left(2x-1\right)=\pm\left(x-3\right)\)

\(\Rightarrow\hept{\begin{cases}2x-1=x-3\\-\left(2x-1\right)=-\left(x-3\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2x-1-x+3=0\\-2x+1-x+3=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+2=0\\-3x+4=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\left(-2\right)\\x=\frac{4}{3}\end{cases}}\)

Vậy ... 

23 tháng 10 2016

A = x(x + y)2 - x(x - y)

= x[(x + y)2 - (x - y)]

B = (2x - 3)(4x2 + 6x + 9) - (2x + 3)(4x2 - 6x + 9)

= 8x3 - 27 - 8x3 - 27

= - 54

C = (x + 3)3 - (x - 3)3 - 18x2 - 18

= x3 + 9x2 + 27x + 27 - x3 + 9x2 - 27x + 27 - 18x2 - 18

= 36

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}

26 tháng 7 2017

a) bt \(=\left(x-8\right)\left(x^2-x-2\right)=\left(x-8\right)\left(x+1\right)\left(x-2\right)\)

kl: ...

b) \(=\left(x+2\right)\left(x^2-8x-15\right)=\left(x+2\right)\left(x-5\right)\left(x-3\right)\)

kl:....

26 tháng 7 2017

a, \(x^3-9x^2+6x+16\)

\(=x^3-8x^2-x^2+8x-2x+16\)

\(=x^2\left(x-8\right)-x\left(x-8\right)-2\left(x-8\right)\)

\(=\left(x-8\right)\left(x^2-x-2\right)\)

\(=\left(x-8\right)\left(x^2-2x+x-2\right)\)

\(=\left(x-8\right)\left[x\left(x-2\right)+\left(x-2\right)\right]\)

\(=\left(x-8\right)\left(x-2\right)\left(x+1\right)\)

b, \(x^3-6x^2-x+30\)

\(=x^3-5x^2-x^2+5x-6x+30\)

\(=x^2\left(x-5\right)-x\left(x-5\right)-6\left(x-5\right)\)

\(=\left(x-5\right)\left(x^2-x-6\right)\)

\(=\left(x-5\right)\left(x^2-3x+2x-6\right)\)

\(=\left(x-5\right)\left[x\left(x-3\right)+2\left(x-3\right)\right]\)

\(=\left(x-5\right)\left(x-3\right)\left(x+2\right)\)

Chúc bạn học tốt!!!

8 tháng 10 2017

*) \(x^2-6x+9=x^2-2\cdot x\cdot3+3^2=\left(x-3\right)^2\)

*) \(4x^2-36=\left(2x\right)^2-6^2=\left(2x-6\right)\left(2x+6\right)\)

*) \(8-x^3=2^3-x^3=\left(2-x\right)\left(4+2x+x^2\right)\)

25 tháng 10 2017

(1) = x^2-3x-3x+̣̣9

= x(x-3)-3(x-3)

(2) =4(x^2-9)

=4(x-3)(x+3)

(3) =2^3-x^3

=(2-x)(4+2x+x^2)

  \(\left(a\right)x^4-2x^3+3x^2-2x+1\)

\(\text{phân tích đa thức thành nhân tử:}\)

b) c) (x2 + x)(x2 + x + 1) - 2

d) (x + 1)(x + 2)(x + 3)(x + 4) - 3

27 tháng 10 2017

a) \(=2xy^2\left(x^2+8x+15\right)\)

\(=2xy^2\left[\left(x^2+8x+16\right)-1\right]\)

\(=2xy^2\left[\left(x+4\right)^2-1\right]\)

\(=2xy^2\left(x+4+1\right)\left(x+4-1\right)\)

\(=2xy^2\left(x+5\right)\left(x-3\right)\)

mấy câu sau tự làm nha :*

29 tháng 10 2017

b,=(x^2-10x+25)-4

  =(x-5)^2-2^2

  =(x-5-2)(x-5+2)

  =(x-7)(x-3)

24 tháng 7 2018

a/ \(x^3-5x^2+8x-4\)

\(\left(x^3-x^2\right)-\left(4x^2-4x\right)+\left(4x-4\right)\)

\(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)

\(\left(x-1\right)\left(x^2-4x+4\right)\)

\(\left(x-1\right)\left(x-2\right)^2\)

b/ \(x^3-x^2+x-1\)

\(\left(x^3-x^2\right)+\left(x-1\right)\)

\(x^2\left(x-1\right)+\left(x-1\right)\)

\(\left(x-1\right)\left(x^2+1\right)\)

27 tháng 10 2016

Bài 1:

1 (x+3)2=x2+6x+9

2

a, 2x2(3x-5x3)+10x5-5x3=6x3-10x5+10x5-5x3=x3

b, (x+3)(x2-3x+9)+(x-9)(x+3)=(x3+27)+(x2-6x-27)=x3+x2-6x

Bài 2:

a, x2-25x=0

\(\Leftrightarrow x\left(x-25\right)=0\)

\(\Leftrightarrow\begin{cases}x=0\\x-25=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=0\\x=25\end{cases}\)

b, (4x-1)2-9=0

\(\Leftrightarrow\left(4x-1-3\right)\left(4x-1+3\right)=0\)

\(\Leftrightarrow\left(4x-4\right)\left(4x+2\right)=0\)

\(\Leftrightarrow4\left(x-1\right)2\left(2x+1\right)=0\)

\(\Leftrightarrow8\left(x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\begin{cases}x-1=0\\2x+1=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=1\\x=\frac{-1}{2}\end{cases}\)

Bài 3:

a, 3x2-18x+27=3(x2-6x+9)=3(x-3)2

b, xy-y2-x+y=y(x-y)-(x-y)=(y-1)(x-y)

c, x2-5x-6=x2-6x+x-6=x(x-6)+(x-6)=(x+1)(x-6)

Bài 4:

a, ( 12x3y3-3x2y3+4x2y4):6x2y3=(12x3y3:6x2y3)-(3x2y3:6x2y3)+(4x2y4:6x2y3)

=2x-1/2 + 2/3y

b, bạn ơi mình không biết cách vẽ đường kẻ để chia ý , nếu bạn biết thì chỉ cho mình rồi mình làm cho

Bài 5 :

b, A = x(2x-3)

A= 2x2-3x

A= 2(x2-3/2x)

A= 2(x2-2x3/4+9/16-9/16)

A=2[(x-3/4)2-9/16]

A=2(x-3/4)2-9/8

A=2(x-3/4)2+(-9/8)

Vì (x-3/4)2 \(\ge\)0 \(\forall x\)

-> 2(x-3/4)2 \(\ge0\forall x\)

-> 2(x-3/4)2+(-9/8)\(\ge-\frac{9}{8}\forall x\)

Vậy MinA= -9/8

6 tháng 1 2017

Bài 1:

1. Khai triển hằng đẳng thức

(x+3)2 = x2+6x+9

2. Thực hiện phép tính

a) 2x2(3x-5x3)+10x5-5x3

=6x3-10x5+10x5-5x3

=x3

b)(x+3)(x2-3x+9)+(x-9)(x+3)

=(x3+27)+(x2+3x-9x-27)

=x3+27+x2+3x-9x-27

=x3+x2-6x

Bài 2:

a) x2-25x=0

\(\Leftrightarrow\)x(x-25)=0

\(\Leftrightarrow\) \(\left[\begin{matrix}x=0\\x-25=0\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}x=0\\x=25\end{matrix}\right.\)

Vậy x=0 hoặc x=25

b)(4x-1)2 - 9=0

\(\Leftrightarrow\)(4x-1+3)(4x-1-3)=0

\(\Leftrightarrow\)(4x+2)(4x-4)=0

\(\Leftrightarrow\)2(2x+1)(2x-2)=0

\(\Leftrightarrow\left[\begin{matrix}2x+1=0\\2x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}x=\frac{-1}{2}\\x=1\end{matrix}\right.\)

Vậy x=1 hoặc x=\(\frac{-1}{2}\)

Bài 3:

a) 3x2-18x+27

=3(x2-6x+9)

=3(x-3)2

b) xy-y2-x+y

=(xy-y2)-(x-y)

=y(x-y)-(x-y)

=(x-y)(y-1)

c) x2-5x-6

=x2-6x+x-6

=(x2-6x)+(x-6)

=x(x-6)+(x-6

=(x-6)(x+1)

Bài 4:

a) (12x3y3-3x2y3+4x2y4) : 6x2y3

=x2y3(12x-3+4y): 6x2y3

=(12x-3+4y) : 6

= (12x : 6)-(3 : 6)+(4y : 6)

=2x-\(\frac{1}{2}\)+\(\frac{2y}{3}\)

b) (6x3-19x2+23x-12) : (2x-3)

=(3x2-5x+4)(2x-3) : (2x-3)

=3x2-5x+4