Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Ta có:
u n + 1 − u n = − 3 ( n + 1 ) + 1 − ( − 3 n + 1 ) = − 3
là hằng số
Suy ra dãy (un) là cấp số cộng với công sai d= -3.
Đáp án A
Ta có:
u n + 1 − u n = n + 1 2 + 1 − ( n 2 + 1 ) = 2 n + 1
phụ thuộc vào n.
Suy ra dãy (un) không phải là cấp số cộng.
Chọn D
Ta có:
u n + 1 − u n = 2 ( n + 1 ) + 3 − ( 2 n + 3 ) = 2
là hằng số
Suy ra dãy (un) là cấp số cộng với công sai d= 2.
S= u1.u1 + u2.u2+...+un.un
S = u1.(u2 - d) + u2.(u3 - d)+...+un(un+1 - d)
S = u1.u2 + u2.u3 +...+un.un+1-d(u1+u2+...+un)
Đặt A = u2.u3 + u3.u4+...+un.un+1
3d.A = u2.u3.(u4-u1) + u3.u4.(u5-u2)+...+un.un+1.(un+2-un-1)
3d.A = u2.u3.u4 - u1.u2.u3 + u3.u4.u5 - u2.u3.u4+...+un.un+1.un+2 - un-1.un.un+1
3d.A = un.un+1.un+2 - u1.u2.u3
3d.A = (u1 + d.n - d)(u1 + d.n)(u1 + d.n + d) - u1.(u1+d).(u1+2.d)
A = [(u1 + d.n - d)(u1 + d.n)(u1 + d.n + d) - u1.(u1+d).(u1+2.d)]/(3.d)
S = A + u1.(u1 + d) + d[2.u1+(n-1).d].n/2
Thay $n=3$ ta có: \(\left\{\begin{matrix} \frac{U_3-U_1}{3}=1\\ U_1-U_3=-4\end{matrix}\right.\) (vô lý)
Bạn xem lại đề.
Công sai d có thể xác định bằng công thức:
\(-4=U_1-U_3=U_1-(U_2+d)=U_1-(U_1+d+d)=-2d\)
\(\Rightarrow d=2\)
\(S_n=\frac{n\left(u_1+u_n\right)}{2}=2n^2-3n\Rightarrow u_1+u_n=4n-6\) \(\forall n\)
\(\Rightarrow2u_1+\left(n-1\right)d=4n-6\)
\(\Rightarrow n.d+2u_1-d=4n-6\)
\(\Rightarrow\left\{{}\begin{matrix}d=4\\2u_1-d=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}d=4\\u_1=-1\end{matrix}\right.\)
a) \({u_1} = 8;\;\;\;\;{u_2} = 13;\;\;\;\;\;{u_3} = 18;\;\;\;\;\;{u_4} = 23;\;\;\;\;\;{u_5} = 28\).
Ta có: \({u_n} - {u_{n - 1}} = 3 + 5n - \left[ {3 + 5\left( {n - 1} \right)} \right] = 5,\;\forall n \ge 2\).
Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} = 8\) và công sai \(d = 5\).
Số hạng tổng quát: \({u_n} = 8 + 5\left( {n - 1} \right)\).
b) \({u_1} = 2;\;\;\;\;{u_2} = 8;\;\;\;\;{u_3} = 14;\;\;\;\;\;{u_4} = 20;\;\;\;\;\;{u_5} = 26\).
Ta có: \({u_n} - {u_{n - 1}} = 6n - 4 - \left[ {6\left( {n - 1} \right) - 4} \right] = 6,\;\forall n \ge 2\).
Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} = 2\) và công sai \(d = 6\).
Số hạng tổng quát: \({u_n} = 2 + 6\left( {n - 1} \right)\).
c) \({u_1} = 2;\;\;\;\;{u_2} = 4;\;\;\;\;\;{u_3} = 7;\;\;\;\;\;\;{u_4} = 11;\;\;\;\;\;\;\;{u_5} = 16\)
Ta có: \({u_n} - {u_{n - 1}} = n,\;\) n biến động.
Suy ra đây không phải là cấp số cộng.
d) \({u_1} = 2;\;\;\;\;{u_2} = 5;\;\;\;\;\;\;{u_3} = 8;\;\;\;\;\;\;{u_4} = 11;\;\;\;\;\;\;\;{u_5} = 14\)
Ta có: \({u_n} - {u_{n - 1}} = 3\).
Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} = 2\) và công sai \(d = 3\).
Số hạng tổng quát: \({u_n} = 2 + 3\left( {n - 1} \right),\;\forall n \ge 2\).
Đáp án A
Ta có:
u n + 1 − u n = 2 n + 1 − 2 n = 2 n − 2 ( n + 1 ) n ( n + 1 ) = − 2 n ( n + 1 )
phụ thuộc vào n
Vậy dãy (un) không phải là cấp số cộng.